Given a matrix, mat[][] of size N * M and two positive integers A and B, the task is to construct a matrix of size A * B from the given matrix elements. If multiple solutions exist, then print any one of them. Otherwise, print -1.
Input: mat[][] = { { 1, 2, 3, 4, 5, 6 } }, A = 2, B = 3Â
Output: { { 1, 2, 3 }, { 4, 5, 6 } }Â
Explanation:Â
Since the size of the matrix { { 1, 2, 3 }, { 4, 5, 6 } } is A * B(2 * 3).Â
Therefore, the required output is { { 1, 2, 3 }, { 4, 5, 6 } }.Input: mat[][] = { {1, 2}, { 3, 4 }, { 5, 6 } }, A = 1, B = 6Â
Output: { { 1, 2, 3, 4, 5, 6 } }
Approach: Follow the steps below to solve the problem:
- Initialize a matrix of size A * B say, res[][].
- Traverse the matrix, mat[][] and insert each element of the matrix into the matrix, res[][].
- Finally, print the matrix res[][].
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std;   // Function to construct a matrix of size // A * B from the given matrix elements void ConstMatrix( int * mat, int N, int M,                  int A, int B) {     if (N * M != A * B)         return ;               int idx = 0;       // Initialize a new matrix     int res[A][B];       // Traverse the matrix, mat[][]     for ( int i = 0; i < N; i++)     {         for ( int j = 0; j < M; j++)         {             res[idx / B][idx % B] = *((mat + i * M) + j);               // Update idx             idx++;         }     }       // Print the resultant matrix     for ( int i = 0; i < A; i++)     {         for ( int j = 0; j < B; j++)             cout << res[i][j] << " " ;                       cout << "\n" ;     } }   // Driver Code int main() {     int mat[][6] = { { 1, 2, 3, 4, 5, 6 } };     int A = 2;     int B = 3;           int N = sizeof (mat) / sizeof (mat[0]);     int M = sizeof (mat[0]) / sizeof ( int );           ConstMatrix(( int *)mat, N, M, A, B);           return 0; }   // This code is contributed by subhammahato348 |
Java
// Java program to implement // the above approach import java.util.*; class GFG {   // Function to construct a matrix of size // A * B from the given matrix elements static void ConstMatrix( int [][] mat, int N, int M,                  int A, int B) {     if (N * M != A * B)         return ;               int idx = 0 ;       // Initialize a new matrix     int [][]res = new int [A][B];       // Traverse the matrix, mat[][]     for ( int i = 0 ; i < N; i++)     {         for ( int j = 0 ; j < M; j++)         {             res[idx / B][idx % B] = mat[i][j];               // Update idx             idx++;         }     }       // Print the resultant matrix     for ( int i = 0 ; i < A; i++)     {         for ( int j = 0 ; j < B; j++)             System.out.print(res[i][j] + " " );                    System.out.print( "\n" );     } }   // Driver Code public static void main(String[] args) {     int mat[][] = { { 1 , 2 , 3 , 4 , 5 , 6 } };     int A = 2 ;     int B = 3 ;        int N = mat.length;     int M = mat[ 0 ].length;        ConstMatrix(mat, N, M, A, B);    } }   // This code is contributed by 29AjayKumar |
Python3
# Python3 program to implement # the above approach     # Function to construct a matrix of size A * B # from the given matrix elements def ConstMatrix(mat, N, M, A, B):     if (N * M ! = A * B):         return - 1     idx = 0 ;                 # Initialize a new matrix     res = [[ 0 for i in range (B)] for i in range (A)]                 # Traverse the matrix, mat[][]     for i in range (N):         for j in range (M):             res[idx / / B][idx % B] = mat[i][j];                                         # Update idx             idx + = 1                 # Print the resultant matrix     for i in range (A):         for j in range (B):             print (res[i][j], end = " " )         print ()       # Driver Code if __name__ = = '__main__' :           mat = [ [ 1 , 2 , 3 , 4 , 5 , 6 ] ]     A = 2     B = 3     N = len (mat)     M = len (mat[ 0 ])     ConstMatrix(mat, N, M, A, B) |
C#
// C# program to implement // the above approach using System; class GFG {   // Function to construct a matrix of size // A * B from the given matrix elements static void ConstMatrix( int [,] mat, int N, int M,                  int A, int B) {     if (N * M != A * B)         return ;            int idx = 0;       // Initialize a new matrix     int [,]res = new int [A,B];       // Traverse the matrix, [,]mat     for ( int i = 0; i < N; i++)     {         for ( int j = 0; j < M; j++)         {             res[idx / B, idx % B] = mat[i, j];               // Update idx             idx++;         }     }       // Print the resultant matrix     for ( int i = 0; i < A; i++)     {         for ( int j = 0; j < B; j++)             Console.Write(res[i, j] + " " );                    Console.Write( "\n" );     } }   // Driver Code public static void Main(String[] args) {     int [,]mat = {{ 1, 2, 3, 4, 5, 6 }};     int A = 2;     int B = 3;        int N = mat.GetLength(0);     int M = mat.GetLength(1);        ConstMatrix(mat, N, M, A, B);    } }   // This code is contributed by 29AjayKumar |
Javascript
<script> // javascript program of the above approach   // Function to construct a matrix of size // A * B from the given matrix elements function ConstMatrix(mat, N, M,                  A, B) {     if (N * M != A * B)         return ;                let idx = 0;        // Initialize a new matrix     let res = new Array(A);     // Loop to create 2D array using 1D array     for ( var i = 0; i < res.length; i++) {         res[i] = new Array(2);     }        // Traverse the matrix, mat[][]     for (let i = 0; i < N; i++)     {         for (let j = 0; j < M; j++)         {             res[(Math.floor(idx / B))][idx % B] = mat[i][j];                // Update idx             idx++;         }     }        // Print the resultant matrix     for (let i = 0; i < A; i++)     {         for (let j = 0; j < B; j++)             document.write(res[i][j] + " " );                   document.write( "<br/>" );     } }        // Driver Code           let mat = [[ 1, 2, 3, 4, 5, 6 ]];     let A = 2;     let B = 3;       let N = mat.length;     let M = mat[0].length;       ConstMatrix(mat, N, M, A, B);     // This code is contributed by chinmoy1997pal. </script> |
1 2 3 4 5 6
Â
Time Complexity: O(N * M)Â
Auxiliary Space: O(N * M)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!