Tensorflow math.accumulate_n() method performs the element-wise sum of a list of passed tensors. The result is a tensor after performing the operation. The operation is done on the representation of a and b. This method belongs to math module.
Syntax: tf.math.accumulate_n( inputs, shape=None, tensor_dtype=None, name=None) Arguments
- inputs: This parameter takes a list of Tensor objects, and each of them with same shape and type.
- shape: This is optional parameter and it defines the expected shape of elements of inputs.
- dtype: This is optional parameter and it defines the expected data type of inputs.
- name: This is optional parameter and this is the name of the operation.
Return: It returns a Tensor having the same shape and type as the elements of inputs.
Let’s see this concept with the help of few examples: Example 1:
Python3
# Importing the Tensorflow library import tensorflow as tf # A constant a and b a = tf.constant([[ 1 , 3 ], [ 6 , 7 ]]) b = tf.constant([[ 5 , 2 ], [ 3 , 8 ]]) # Applying the accumulate_n() function # storing the result in 'c' c = tf.math.accumulate_n([a, b, b]) # Initiating a Tensorflow session with tf.Session() as sess: print (" Input 1 ", a) print (sess.run(a)) print (" Input 2 ", b) print (sess.run(b)) print ("Output: ", c) print (sess.run(c)) |
Output:
Input 1 Tensor("Const_67:0", shape=(2, 2), dtype=int32) [[1 3] [6 7]] Input 2 Tensor("Const_68:0", shape=(2, 2), dtype=int32) [[5 2] [3 8]] Output: Tensor("AccumulateNV2_2:0", shape=(2, 2), dtype=int32) [[11 7] [12 23]]
Example 2:
Python3
# Importing the Tensorflow library import tensorflow as tf # A constant a and b a = tf.constant([[ 2 , 4 ], [ 1 , 3 ]]) b = tf.constant([[ 5 , 3 ], [ 4 , 6 ]]) # Applying the accumulate_n() function # storing the result in 'c' c = tf.math.accumulate_n([b, a, b], shape = [ 2 , 2 ], tensor_dtype = tf.int32) # Initiating a Tensorflow session with tf.Session() as sess: print (" Input 1 ", a) print (sess.run(a)) print (" Input 2 ", b) print (sess.run(b)) print ("Output: ", c) print (sess.run(c)) |
Output:
Input 1 Tensor("Const_73:0", shape=(2, 2), dtype=int32) [[2 4] [1 3]] Input 2 Tensor("Const_74:0", shape=(2, 2), dtype=int32) [[5 3] [4 6]] Output: Tensor("AccumulateNV2_5:0", shape=(2, 2), dtype=int32) [[12 10] [ 9 15]]