Friday, September 5, 2025
HomeLanguagesscipy stats.gompertz() | Python

scipy stats.gompertz() | Python

scipy.stats.gompertz() is an Gompertz (or truncated Gumbel) continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Gompertz (or truncated Gumbel) continuous random variable

Code #1 : Creating Gompertz (or truncated Gumbel) continuous random variable




from scipy.stats import gompertz 
  
numargs = gompertz.numargs
[a] = [0.7, ] * numargs
rv = gompertz(a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E39A3E2470>

Code #2 : Gompertz (or truncated Gumbel) random variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = gompertz.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = gompertz.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [1.29938059 1.47547887 1.33324567 1.79424061 0.45304378 1.46222247
 1.29260365 0.59989705 3.58467676 1.81226267]

Probability Distribution : 
 [0.01993441 0.19813875 0.34179784 0.45591617 0.54485437 0.61240685
 0.66187043 0.69610503 0.71758726 0.72845776]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = gompertz.pdf(x, 1, 3)
y2 = gompertz.pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32265 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6635 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11864 POSTS0 COMMENTS
Shaida Kate Naidoo
6752 POSTS0 COMMENTS
Ted Musemwa
7026 POSTS0 COMMENTS
Thapelo Manthata
6703 POSTS0 COMMENTS
Umr Jansen
6719 POSTS0 COMMENTS