What are Chunks? 
These are made up of words and the kinds of words are defined using the part-of-speech tags. One can even define a pattern or words that can’t be a part of chuck and such words are known as chinks. A ChunkRule class specifies what words or patterns to include and exclude in a chunk.
How it works : 
 
- The ChunkedCorpusReader class works similar to the TaggedCorpusReader for getting tagged tokens, plus it also provides three new methods for getting chunks.
- An instance of nltk.tree.Tree represents each chunk.
- Noun phrase trees look like Tree(‘NP’, […]) where as Sentence level trees look like Tree(‘S’, […]).
- A list of sentence trees, with each noun phrase as a subtree of the sentence is obtained in n chunked_sents()
- A list of noun phrase trees alongside tagged tokens of words that were not in a chunk is obtained in chunked_words().
Diagram listing the major methods: 
 
Code #1 : Creating a ChunkedCorpusReader for words
Python3
| # Using ChunkedCorpusReaderfromnltk.corpus.reader importChunkedCorpusReader# initializingx =ChunkedCorpusReader('.', r'.*\.chunk')words =x.chunked_words()print("Words : \n", words) | 
Output :
Words : 
[Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'), 
('moves', 'NNS')]), ('have', 'VBP'), ...]
Code #2 : For sentence
Python3
| Chunked Sentence =x.chunked_sents()print("Chunked Sentence : \n", tagged_sent) | 
Output :
Chunked Sentence : 
[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction', 'NN'), 
('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'), ('about', 'IN'), 
Tree('NP', [('300', 'CD'), ('jobs', 'NNS')]), (', ', ', '),
Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said', 'VBD'), ('.', '.')])]
Code #3 : For paragraphs
Python3
| para =x.chunked_paras()()print("para : \n", para) | 
Output :
[[Tree('S', [Tree('NP', [('Earlier', 'JJR'), ('staff-reduction',
'NN'), ('moves', 'NNS')]), ('have', 'VBP'), ('trimmed', 'VBN'),
('about', 'IN'), 
Tree('NP', [('300', 'CD'), ('jobs', 'NNS')]), (', ', ', '), 
Tree('NP', [('the', 'DT'), ('spokesman', 'NN')]), ('said', 'VBD'), ('.', '.')])]] 

 
                                    








