Wednesday, September 3, 2025
HomeLanguagesJavascriptTensorflow.js tf.train.adagrad() Function

Tensorflow.js tf.train.adagrad() Function

Tensorflow.js is an open-source library developed by Google for running machine learning models and deep learning neural networks in the browser or node environment.

The tf.train.adagrad() function us used to create a tf.AdagradOptimizer that uses Adaptive Gradient Algorithm(adagrad). 

Syntax:

tf.train.adagrad(learningRate).

Parameters:

  • learningRate: It specifies the learning rate which will be used by adaptive gradient descent algorithm.
  • initialAccumulatorValue: It specifies the initial value of accumulators. It must be positive.

Return value: It returns a tf.adagradOptimizer.

Example 1 : Fit a function f = (x + y) by learning the coefficients x, y.

Javascript




// importing tensorflow
import tensorflow as tf
 
const xs = tf.tensor1d([0, 1, 2]);
const ys = tf.tensor1d([1.3, 2.5, 3.7]);
 
const x = tf.scalar(Math.random()).variable();
const y = tf.scalar(Math.random()).variable();
 
// Define a function f(x, y) = x + y.
const f = x => x.add(y);
const loss = (pred, label) =>
    pred.sub(label).square().mean();
 
const learningRate = 0.05;
 
// Create adagrad optimizer
const optimizer =
  tf.train.adagrad(learningRate);
 
// Train the model.
for (let i = 0; i < 5; i++) {
   optimizer.minimize(() => loss(f(xs), ys));
}
 
// Make predictions.
console.log(
`x: ${x.dataSync()}, y: ${y.dataSync()}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
console.log(`x: ${i}, pred: ${pred}`);
});


Output

x: 0.8561810255050659, y: 0.6922483444213867
x: 0, pred: 0.6922483444213867
x: 1, pred: 1.6922483444213867
x: 2, pred: 2.6922483444213867

Example 2: Fit a quadratic function by learning the coefficients a, b, c.

Javascript




// importing tensorflow
import tensorflow as tf
 
const xs = tf.tensor1d([0, 1, 2, 3]);
const ys = tf.tensor1d([1.1, 5.9, 16.8, 33.9]);
 
const a = tf.scalar(Math.random()).variable();
const b = tf.scalar(Math.random()).variable();
const c = tf.scalar(Math.random()).variable();
 
const f = x => a.mul(
  x.square()).add(b.mul(x)).add(c);
const loss = (pred, label) =>
         pred.sub(label).square().mean();
 
const learningRate = 0.01;
const optimizer =
      tf.train.adagrad(learningRate);
 
// Train the model.
for (let i = 0; i < 10; i++) {
   optimizer.minimize(() => loss(f(xs), ys));
}
 
// Make predictions.
console.log(
`a: ${a.dataSync()}, b: ${b.dataSync()}, c: ${c.dataSync()}`);
const preds = f(xs).dataSync();
preds.forEach((pred, i) => {
   console.log(`x: ${i}, pred: ${pred}`);
});


Output

a: 0.3611285388469696, 
b: 0.6980878114700317, 
c: 0.8787991404533386
x: 0, pred: 0.8787991404533386
x: 1, pred: 1.9380154609680176
x: 2, pred: 3.7194888591766357
x: 3, pred: 6.223219394683838

Reference: https://js.tensorflow.org/api/1.0.0/#train.adagrad

Whether you’re preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, neveropen Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we’ve already empowered, and we’re here to do the same for you. Don’t miss out – check it out now!
RELATED ARTICLES

Most Popular

Dominic
32260 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6625 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6746 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6694 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS