Friday, January 16, 2026
HomeLanguagesPython – Laplacian Distribution in Statistics

Python – Laplacian Distribution in Statistics

scipy.stats.dlaplace() is a Laplacian discrete random variable. It is inherited from the of generic methods as an instance of the rv_discrete class. It completes the methods with details specific for this particular distribution.

Parameters :

x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Laplacian discrete random variable

Code #1 : Creating Laplacian discrete random variable




# importing library
  
from scipy.stats import dlaplace 
    
numargs = dlaplace .numargs 
a, b = 0.2, 0.8
rv = dlaplace (a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000016A4C4B4908

Code #2 : Laplacian discrete variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = dlaplace .rvs(a, b, size = 10
print ("Random Variates : \n", R) 
  
# PDF 
x = np.linspace(dlaplace.ppf(0.01, a, b),
                dlaplace.ppf(0.99, a, b), 10)
R = dlaplace.ppf(x, 1, 3)
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 [ 2  0  1  3 14  0  1 14  6  0]

Probability Distribution : 
 [nan nan nan nan nan nan nan nan nan nan]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 2)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.ppf(distribution)) 


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
  
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = dlaplace.ppf(x, a, b) 
y2 = dlaplace.pmf(x, a, b) 
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32474 POSTS0 COMMENTS
Milvus
117 POSTS0 COMMENTS
Nango Kala
6845 POSTS0 COMMENTS
Nicole Veronica
11976 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12061 POSTS0 COMMENTS
Shaida Kate Naidoo
6984 POSTS0 COMMENTS
Ted Musemwa
7217 POSTS0 COMMENTS
Thapelo Manthata
6932 POSTS0 COMMENTS
Umr Jansen
6910 POSTS0 COMMENTS