Friday, October 10, 2025
HomeLanguagesPython – Lomax Distribution in Statistics

Python – Lomax Distribution in Statistics

scipy.stats.lomax() is a Lomax (Pareto of the second kind) continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Lomax continuous random variable

Code #1 : Creating Lomax continuous random variable




# importing library
  
from scipy.stats import lomax  
    
numargs = lomax.numargs 
a, b = 4.32, 3.18
rv = lomax(a, b) 
    
print ("RV : \n", rv)  


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D6564888


Code #2 : Lomax continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = lomax.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = lomax.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 3.197400505329826

Probability Distribution : 
 [0.00296164 0.0032066  0.00347718 0.00377664 0.00410872 0.00447776
 0.00488877 0.00534758 0.00586097 0.00643686]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]
 

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = lomax .pdf(x, 1, 3
y2 = lomax .pdf(x, 1, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32350 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6718 POSTS0 COMMENTS
Nicole Veronica
11880 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11941 POSTS0 COMMENTS
Shaida Kate Naidoo
6838 POSTS0 COMMENTS
Ted Musemwa
7101 POSTS0 COMMENTS
Thapelo Manthata
6794 POSTS0 COMMENTS
Umr Jansen
6794 POSTS0 COMMENTS