Thursday, October 23, 2025
HomeLanguagesscipy stats.burr() | Python

scipy stats.burr() | Python

scipy.stats.burr() is an burr continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
a, b : shape parameters
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : burr continuous random variable

Code #1 : Creating burr continuous random variable




# importing scipy
from scipy.stats import burr
  
numargs = burr.numargs
[a, b] = [0.6, ] * numargs
rv = burr(a, b)
  
print ("RV : \n", rv)


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000029482FCC438>

Code #2 : beta random variates and probability distribution function.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = burr.rvs(a, b, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = burr.pdf(quantile, a, b, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [1.51241629e-04 3.47964171e-01 2.94154949e-02 5.10430246e-02
 1.82413279e-02 2.12564883e+00 3.51099766e-05 2.32907895e+01
 6.24723647e-04 2.79124934e-01]

Probability Distribution : 
 [6.21994723 1.01375434 0.57575653 0.40021455 0.30462819 0.24439598
 0.20298921 0.17281591 0.14988693 0.1319016 ] 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 5))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.10204082 0.20408163 0.30612245 0.40816327 0.51020408
 0.6122449  0.71428571 0.81632653 0.91836735 1.02040816 1.12244898
 1.2244898  1.32653061 1.42857143 1.53061224 1.63265306 1.73469388
 1.83673469 1.93877551 2.04081633 2.14285714 2.24489796 2.34693878
 2.44897959 2.55102041 2.65306122 2.75510204 2.85714286 2.95918367
 3.06122449 3.16326531 3.26530612 3.36734694 3.46938776 3.57142857
 3.67346939 3.7755102  3.87755102 3.97959184 4.08163265 4.18367347
 4.28571429 4.3877551  4.48979592 4.59183673 4.69387755 4.79591837
 4.89795918 5.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 1.0, 100)
  
# Varying positional arguments
y1 = burr.pdf(x, 2.75, 2.75)
y2 = burr.pdf(x, 3.25, 3.25)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32361 POSTS0 COMMENTS
Milvus
88 POSTS0 COMMENTS
Nango Kala
6728 POSTS0 COMMENTS
Nicole Veronica
11892 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11954 POSTS0 COMMENTS
Shaida Kate Naidoo
6852 POSTS0 COMMENTS
Ted Musemwa
7113 POSTS0 COMMENTS
Thapelo Manthata
6805 POSTS0 COMMENTS
Umr Jansen
6801 POSTS0 COMMENTS