scipy.stats.tmax(array, lowerlimit=None, axis=0, inclusive=True) function calculates the trimmed maximum of the array elements along with ignoring the values lying outside the specified limits, along the specified axis.
Parameters :
array: Input array or object having the elements to calculate the trimmed maximum.
axis: Axis along which the statistics is to be computed. By default axis = 0
limits: Lower and upper bound of the array to consider, values less than the lower limit or greater than the upper limit will be ignored. If limits is None [default], then all values are used.
inclusive: Decide whether to include the values equal to lower or upper bound, or to exclude them while calculation.Returns : Trimmed maximum of the array elements based on the set parameters.
Code #1:
| # Trimmed Maximum    Âfromscipy importstats importnumpy as np    Â# array elements ranging from 0 to 19 x =[1, 3, 27, 56, 2, 4, 13, 3, 6]    Âprint("Trimmed Maximum :", stats.tmax(x))    Â  Âprint("\nTrimmed Maximum by setting limit : ",        stats.tmax(x, (5)))  | 
Trimmed Maximum : 56 Trimmed Maximum by setting limit : 4
Code #2: With multi-dimensional data
| # Trimmed Maximum    Âfromscipy importstats importnumpy as np    Â# array elements ranging from 0 to 19 x =[[1, 3, 27],          [3, 4, 7],          [7, 6, 3],          [3, 6, 8]]   Âprint("Trimmed Maximum :", stats.tmax(x))    Â# setting axis print("\nTrimmed Maximum by setting axis : ",        stats.tmax(x, axis =1))   Âprint("\nTrimmed Maximum by setting axis : ",        stats.tmax(x, axis =0))   Â# setting limit print("\nTrimmed Maximum by setting limit : ",        stats.tmax(x, (5), axis =1))   Â  Âprint("\nTrimmed Maximum by setting limit : ",        stats.tmax(x, (5), axis =0))  | 
Trimmed Maximum : [ 7 6 27] Trimmed Maximum by setting axis : [27 7 7 8] Trimmed Maximum by setting axis : [ 7 6 27] Trimmed Maximum by setting limit : [3 4 3 3] Trimmed Maximum by setting limit : [3 4 3]

 
                                    







