Friday, January 30, 2026
HomeLanguagessympy.stats.LogLogistic() in python

sympy.stats.LogLogistic() in python

With the help of sympy.stats.LogLogistic() method, we can get the continuous random variable which represents the Log-Logistic distribution.

Syntax : sympy.stats.LogLogistic(name, alpha, beta)
Where, alpha and beta are real number and alpha, beta > 0.
Return : Return the continuous random variable.

Example #1 :
In this example we can see that by using sympy.stats.LogLogistic() method, we are able to get the continuous random variable representing Log-Logistic distribution by using this method.




# Import sympy and LogLogistic
from sympy.stats import LogLogistic, density
from sympy import Symbol, pprint
  
z = Symbol("z")
alpha = Symbol("alpha", positive = True)
beta = Symbol("beta", positive = True)
  
# Using sympy.stats.LogLogistic() method
X = LogLogistic("x", alpha, beta)
gfg = density(X)(z)
  
pprint(gfg)


Output :

beta – 1
/ z \
beta*|—–|
\alpha/
————————
2
/ beta \
|/ z \ |
alpha*||—–| + 1|
\\alpha/ /

Example #2 :




# Import sympy and LogLogistic
from sympy.stats import LogLogistic, density
from sympy import Symbol, pprint
  
z = 1.2
alpha = 2
beta = 3
  
# Using sympy.stats.LogLogistic() method
X = LogLogistic("x", alpha, beta)
gfg = density(X)(z)
  
pprint(gfg)


Output :

0.365196502770083

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
122 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11978 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12065 POSTS0 COMMENTS
Shaida Kate Naidoo
6987 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6934 POSTS0 COMMENTS
Umr Jansen
6917 POSTS0 COMMENTS