Friday, September 26, 2025
HomeLanguagessciPy stats.binned_statistic_dd() function | Python

sciPy stats.binned_statistic_dd() function | Python

stats.binned_statistic_dd(arr, values, statistic='mean', bins=10, range=None) function computes the binned statistics value for the given two dimensional data.
It works similar to histogram2d. As histogram function makes bins and counts the no. of points in each bin; this function computes the sum, mean, median, count or other statistics of the values for each bin.

Parameters :
arr : [array_like] Data to histogram passed as (N, D) array
values : [array_like]on which stats to be calculated.
statistics : Statistics to compute {mean, count, median, sum, function}. Default is mean.
bin : [int or scalars]If bins is an int, it defines the number of equal-width bins in the given range (10, by default). If bins is a sequence, it defines the bin edges.
range : (float, float) Lower and upper range of the bins and if not provided, range is from x.max() to x.min().

Results : Statistics value for each bin; bin edges; bin number.

Code #1 :




# stats.binned_statistic_dd() method 
import numpy as np
from scipy import stats
  
x = np.ones(10)
y = np.ones(10)
  
print ("x : \n", x)
print ("\ny : \n", y)
  
print ("\nbinned_statistic_2d for count : "
       stats.binned_statistic_dd([x, y], None, 'count', bins = 3))


Output :

x :
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

y :
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]

binned_statistic_2d for count : BinnedStatisticddResult(statistic=array([[ 0., 0., 0.],
[ 0., 10., 0.],
[ 0., 0., 0.]]), bin_edges=[array([0.5, 0.83333333, 1.16666667, 1.5 ]),
array([0.5, 0.83333333, 1.16666667, 1.5 ])],
binnumber=array([12, 12, 12, 12, 12, 12, 12, 12, 12, 12], dtype=int64))

 
Code #2 :




# importing libraries
import numpy as np
from scipy import stats
  
# using np.ones for x and y
x = np.ones(10)
y = np.ones(10)
  
# Using binned_statistic_dd
print ("\nbinned_statistic_2d for count : "
        stats.binned_statistic_dd([x, y], None,
        'count', bins=3, range=[[2,3],[0,0.5]]))


Output :

binned_statistic_2d for count : BinnedStatisticddResult(statistic=array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]), bin_edges=[array([2., 2.33333333, 2.66666667, 3. ]),
array([0., 0.16666667, 0.33333333, 0.5 ])],
binnumber=array([4, 4, 4, 4, 4, 4, 4, 4, 4, 4], dtype=int64))

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32321 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6683 POSTS0 COMMENTS
Nicole Veronica
11854 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11910 POSTS0 COMMENTS
Shaida Kate Naidoo
6795 POSTS0 COMMENTS
Ted Musemwa
7071 POSTS0 COMMENTS
Thapelo Manthata
6757 POSTS0 COMMENTS
Umr Jansen
6762 POSTS0 COMMENTS