Tuesday, February 3, 2026
HomeLanguagesPython – Semicircular Distribution in Statistics

Python – Semicircular Distribution in Statistics

scipy.stats.semicircular() is a semicircular continuous random variable. It is inherited from the of generic methods as an instance of the rv_continuous class. It completes the methods with details specific for this particular distribution.

Parameters :

q : lower and upper tail probability
x : quantiles
loc : [optional]location parameter. Default = 0
scale : [optional]scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : Semi-circular continuous random variable

Code #1 : Creating Semi-circular continuous random variable




# importing library
  
from scipy.stats import semicircular 
    
numargs = semicircular .numargs 
a, b = 4.32, 3.18
rv = semicircular (a, b) 
    
print ("RV : \n", rv) 


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D843A9C8

Code #2 : Semi-circular continuous variates and probability distribution




import numpy as np 
quantile = np.arange (0.01, 1, 0.1
  
# Random Variates 
R = semicircular.rvs(a, b) 
print ("Random Variates : \n", R) 
  
# PDF 
R = semicircular.pdf(a, b, quantile) 
print ("\nProbability Distribution : \n", R) 


Output :

Random Variates : 
 4.041796830801463

Probability Distribution : 
 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

Code #3 : Graphical Representation.




import numpy as np 
import matplotlib.pyplot as plt 
     
distribution = np.linspace(0, np.minimum(rv.dist.b, 3)) 
print("Distribution : \n", distribution) 
     
plot = plt.plot(distribution, rv.pdf(distribution)) 


Output :

Distribution : 
 [0.         0.02040816 0.04081633 0.06122449 0.08163265 0.10204082
 0.12244898 0.14285714 0.16326531 0.18367347 0.20408163 0.2244898
 0.24489796 0.26530612 0.28571429 0.30612245 0.32653061 0.34693878
 0.36734694 0.3877551  0.40816327 0.42857143 0.44897959 0.46938776
 0.48979592 0.51020408 0.53061224 0.55102041 0.57142857 0.59183673
 0.6122449  0.63265306 0.65306122 0.67346939 0.69387755 0.71428571
 0.73469388 0.75510204 0.7755102  0.79591837 0.81632653 0.83673469
 0.85714286 0.87755102 0.89795918 0.91836735 0.93877551 0.95918367
 0.97959184 1.        ]
  

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt 
import numpy as np 
     
x = np.linspace(0, 5, 100
     
# Varying positional arguments 
y1 = semicircular .pdf(x, 1, 3, 5
y2 = semicircular .pdf(x, 1, 4, 4
plt.plot(x, y1, "*", x, y2, "r--"


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32478 POSTS0 COMMENTS
Milvus
124 POSTS0 COMMENTS
Nango Kala
6849 POSTS0 COMMENTS
Nicole Veronica
11979 POSTS0 COMMENTS
Nokonwaba Nkukhwana
12066 POSTS0 COMMENTS
Shaida Kate Naidoo
6987 POSTS0 COMMENTS
Ted Musemwa
7222 POSTS0 COMMENTS
Thapelo Manthata
6935 POSTS0 COMMENTS
Umr Jansen
6919 POSTS0 COMMENTS