Wednesday, October 1, 2025
HomeLanguagesscipy stats.exponpow() | Python

scipy stats.exponpow() | Python

scipy.stats.exponpow() is an exponential power continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : exponential power continuous random variable

Code #1 : Creating exponential power continuous random variable




from scipy.stats import exponpow   
  
numargs = exponpow  .numargs
[a] = [0.6, ] * numargs
rv = exponpow(a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D566864A8>

Code #2 : exponential power random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = exponpow.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = exponpow.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [0.39218526 0.4418613  0.23005955 3.56399807 0.29120501 0.27121159
 0.07933858 2.54235979 3.05448398 0.6408786 ]

Probability Distribution : 
 [0.00815589 0.09245642 0.18010922 0.26897814 0.35721501 0.44327698
 0.52592189 0.60418893 0.67737085 0.74498201]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = exponpow  .pdf(x, 2, 6)
y2 = exponpow  .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32330 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6703 POSTS0 COMMENTS
Nicole Veronica
11867 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11926 POSTS0 COMMENTS
Shaida Kate Naidoo
6815 POSTS0 COMMENTS
Ted Musemwa
7078 POSTS0 COMMENTS
Thapelo Manthata
6775 POSTS0 COMMENTS
Umr Jansen
6774 POSTS0 COMMENTS