Thursday, September 25, 2025
HomeLanguagesNumpy MaskedArray.var() function | Python

Numpy MaskedArray.var() function | Python

numpy.MaskedArray.var() function is used to compute the variance along the specified axis. It returns the variance of the masked array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis.

Syntax : numpy.ma.var(arr, axis=None, dtype=None, out=None, ddof=0, keepdims=False)
Parameters:
arr : [ ndarray ] Input masked array. 
axis :[ int, optional] Axis along which the variance is computed. The default (None) is to compute the variance over the flattened array. 
dtype : [dtype, optional] Type of the returned array, as well as of the accumulator in which the elements are multiplied. 
out : [ndarray, optional] A location into which the result is stored. 
  -> If provided, it must have a shape that the inputs broadcast to. 
  -> If not provided or None, a freshly-allocated array is returned. 
ddof : [int, optional] “Delta Degrees of Freedom”: the divisor used in the calculation is N – ddof, where N represents the number of elements. By default ddof is zero. 
keepdims :[ bool, optional] If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array.
Return : [variance_along_axis, ndarray] A new array holding the result is returned unless out is specified, in which case a reference to out is returned.

Code #1 :  

Python3




# Python program explaining
# numpy.MaskedArray.var() method
   
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
   
# creating input array 
in_arr = geek.array([[1, 2], [ 3, -1], [ 5, -3]])
print ("Input array : ", in_arr)
   
# Now we are creating a masked array.
# by making  entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[[1, 0], [ 1, 0], [ 0, 0]])
print ("Masked array : ", mask_arr)
   
# applying MaskedArray.var   
# methods to masked array
out_arr = ma.var(mask_arr)
print ("variance of masked array along default axis : ", out_arr)


Output: 

Input array :  [[ 1  2]
 [ 3 -1]
 [ 5 -3]]
Masked array :  [[-- 2]
 [-- -1]
 [5 -3]]
variance of masked array along default axis :  9.1875

 

 Code #2 : 

Python3




# Python program explaining
# numpy.MaskedArray.var() method
    
# importing numpy as geek 
# and numpy.ma module as ma
import numpy as geek
import numpy.ma as ma
    
# creating input array
in_arr = geek.array([[1, 0, 3], [ 4, 1, 6]])
print ("Input array : ", in_arr)
     
# Now we are creating a masked array.
# by making one entry as invalid. 
mask_arr = ma.masked_array(in_arr, mask =[[ 0, 0, 0], [ 0, 0, 1]])
print ("Masked array : ", mask_arr)
    
# applying MaskedArray.var methods
# to masked array
out_arr1 = ma.var(mask_arr, axis = 0)
print ("variance of masked array along 0 axis : ", out_arr1)
 
out_arr2 = ma.var(mask_arr, axis = 1)
print ("variance of masked array along 1 axis : ", out_arr2)


Output:

Input array :  [[1 0 3]

 [4 1 6]]

Masked array :  [[1 0 3]

 [4 1 --]]

variance of masked array along 0 axis :  [2.25 0.25 0.  ]

variace of masked array along 1 axis :  [1.55555556 2.25      ]
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32319 POSTS0 COMMENTS
Milvus
84 POSTS0 COMMENTS
Nango Kala
6680 POSTS0 COMMENTS
Nicole Veronica
11854 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11910 POSTS0 COMMENTS
Shaida Kate Naidoo
6794 POSTS0 COMMENTS
Ted Musemwa
7070 POSTS0 COMMENTS
Thapelo Manthata
6753 POSTS0 COMMENTS
Umr Jansen
6761 POSTS0 COMMENTS