With the help of Numpy ndarray.__copy__()
method, we can make a copy of all the data elements that is present in numpy array. If you change any data element in the copy, it will not affect the original numpy array.
Syntax :
numpy.__copy__()
Return : Copy of all the data elements
Example #1 :
In this example we can see that with the help of numpy.__copy__()
method we are making the copy of an elements.
# import the important module in python import numpy as np         # make an array with numpy gfg = np.array([ 1 , 2 , 3 , 4 , 5 ])         # applying ndarray.__copy__() method neveropen = gfg.__copy__()   print (neveropen) |
[1 2 3 4 5]
Example #2 :
# import the important module in python import numpy as np         # make an array with numpy gfg = np.array([[ 1 , 2 , 3 , 4 , 5 ],                 [ 6 , 5 , 4 , 3 , 2 ]])         # applying ndarray.__copy__() method neveropen = gfg.__copy__()   # Change the data element neveropen[ 0 ][ 2 ] = 10   print (gfg, end = '\n\n' ) print (neveropen) |
[[1 2 3 4 5] [6 5 4 3 2]] [[ 1 2 10 4 5] [ 6 5 4 3 2]]