Thursday, October 9, 2025
HomeLanguagesMatplotlib.axes.Axes.pickable() in Python

Matplotlib.axes.Axes.pickable() in Python

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.

matplotlib.axes.Axes.pickable() Function

The Axes.pickable() function in axes module of matplotlib library is used to return whether the artist is pickable or not.

Syntax: Axes.pickable(self)

Parameters: This method does not accept any parameters.

Returns: This method return whether the artist is pickable.

Below examples illustrate the matplotlib.axes.Axes.pickable() function in matplotlib.axes:

Example 1:




# Implementation of matplotlib function
import numpy as np
np.random.seed(19680801)
import matplotlib.pyplot as plt
   
volume = np.random.rayleigh(27, size = 40)
amount = np.random.poisson(10, size = 40)
ranking = np.random.normal(size = 40)
price = np.random.uniform(1, 10, size = 40)
   
fig, ax = plt.subplots()
   
scatter = ax.scatter(volume * 2, amount * 3,
                     c = ranking * 3
                     s = 0.3*(price * 3)**2,
                     vmin = -4, vmax = 4
                     cmap = "Spectral")
  
legend1 = ax.legend(*scatter.legend_elements(num = 5),
                    loc ="upper left",
                    title ="Ranking")
  
ax.add_artist(legend1)
  
ax.text(60, 30, "Value return : " + str(ax.pickable()), 
        fontweight ="bold"
        fontsize = 18)
   
fig.suptitle('matplotlib.axes.Axes.pickable() function\
Example', fontweight ="bold")
  
plt.show()


Output:

Example 2:




import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cbook as cbook
   
np.random.seed(10**7)
data = np.random.lognormal(size =(10, 4),
                           mean = 4.5,
                           sigma = 4.75)
  
labels = ['G1', 'G2', 'G3', 'G4']
   
result = cbook.boxplot_stats(data, 
                             labels = labels, 
                             bootstrap = 1000)
   
for n in range(len(result)):
    result[n]['med'] = np.median(data)
    result[n]['mean'] *= 0.1
  
fig, axes1 = plt.subplots()
axes1.bxp(result)
  
axes1.text(2, 30000,
           "Value return : " + str(axes1.pickable()), 
           fontweight ="bold")
   
fig.suptitle('matplotlib.axes.Axes.pickable() function \
Example', fontweight ="bold")
  
plt.show()


Output:

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32342 POSTS0 COMMENTS
Milvus
87 POSTS0 COMMENTS
Nango Kala
6712 POSTS0 COMMENTS
Nicole Veronica
11876 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11937 POSTS0 COMMENTS
Shaida Kate Naidoo
6833 POSTS0 COMMENTS
Ted Musemwa
7092 POSTS0 COMMENTS
Thapelo Manthata
6786 POSTS0 COMMENTS
Umr Jansen
6789 POSTS0 COMMENTS