In Pandas, Panel is a very important container for three-dimensional data. The names for the 3 axes are intended to give some semantic meaning to describing operations involving panel data and, in particular, econometric analysis of panel data.
In Pandas Panel.mod()  function is used to get the module of series and dataframe/Panel.
Syntax: Panel.mod(other, axis=0)
Parameters:
other : DataFrame or Panel
axis : Axis to broadcast overReturns: Panel
Code #1:
| # importing pandas module  importpandas as pd  importnumpy as np   Âdf1 =pd.DataFrame({'a': ['Geeks', 'For', 'neveropen', 'real'],                      'b': [111, 123, 425, 1333]})   Âdf2 =pd.DataFrame({'a': ['I', 'am', 'dataframe', 'two'],                      'b': [100, 100, 100, 100]})                       Âdata ={'item1':df1, 'item2':df2}  Â# creating Panel  panel =pd.Panel.from_dict(data, orient ='minor')  print("panel['b'] is - \n\n", panel['b'])   Âprint("\nModulo of panel['b'] with df2['b'] using mod() method - \n")  print("\n", panel['b'].mod(df2['b'], axis =0))   | 
panel['b'] is - 
    item1  item2
0    111    100
1    123    100
2    425    100
3   1333    100
Modulo of panel['b'] with df2['b'] using mod() method - 
    item1  item2
0     11      0
1     23      0
2     25      0
3     33      0
Â
Code #2:
| # importing pandas module  importpandas as pd  importnumpy as np   Âdf1 =pd.DataFrame({'a': ['Geeks', 'For', 'neveropen', 'for', 'real'],                      'b': [11, 1.025, 333, 114.48, 1333]})   Âdata ={'item1':df1, 'item2':df1}   Â# creating Panel  panel =pd.Panel.from_dict(data, orient ='minor')  print("panel['b'] is - \n\n", panel['b'], '\n')   Â# Create a 5 * 5 dataframe  df2 =pd.DataFrame(np.random.rand(5, 2), columns =['item1', 'item2'])  print("Newly create dataframe with random values is - \n\n", df2)  Âprint("\nModulo of panel['b'] with df2 using mod() method - \n")  print(panel['b'].mod(df2, axis =0))   | 
panel['b'] is - 
       item1     item2
0    11.000    11.000
1     1.025     1.025
2   333.000   333.000
3   114.480   114.480
4  1333.000  1333.000 
Newly create dataframe with random values is - 
       item1     item2
0  0.003619  0.293626
1  0.624030  0.360525
2  0.335041  0.450568
3  0.414065  0.120144
4  0.842085  0.222036
Modulo of panel['b'] with df2 using mod() method - 
      item1     item2
0  0.001529  0.135848
1  0.400970  0.303949
2  0.303965  0.030172
3  0.197954  0.103345
4  0.820835  0.118100
Â
Code #3:
| # importing pandas module  importpandas as pd  importnumpy as np   Âdf1 =pd.DataFrame({'a': ['Geeks', 'For', 'neveropen', 'for', 'real'],                      'b': [11, 1.025, 333, 114.48, 1333]})                       Âdf2 =pd.DataFrame({'a': ['I', 'am', 'DataFrame', 'number', 'two'],                      'b': [10, 10, 10, 110, 110]})                                           Âdata ={'item1':df1, 'item2':df2}   Â# creating Panel  panel =pd.Panel.from_dict(data, orient ='minor')   Âprint("panel['b'] is - \n\n", panel['b'], '\n')   Âprint("\nModulo of panel['b']['item1'] with df2['b'] or panel['b']['item2'] using mod() method - \n")  print("\n", panel['b']['item1'].mod(df2['b'], axis =0))   | 
panel['b'] is - 
       item1  item2
0    11.000     10
1     1.025     10
2   333.000     10
3   114.480    110
4  1333.000    110 
Modulo of panel['b']['item1'] with df2['b'] or panel['b']['item2'] using mod() method - 
 0     1.000
1     1.025
2     3.000
3     4.480
4    13.000
dtype: float64
Â

 
                                    







