Monday, October 6, 2025
HomeLanguagesscipy stats.genhalflogistic() | Python

scipy stats.genhalflogistic() | Python

scipy.stats.genhalflogistic() is an generalized half-logistic continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> a, b : shape parameters
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : generalized half-logistic continuous random variable

Code #1 : Creating generalized half-logistic continuous random variable




from scipy.stats import genhalflogistic 
  
numargs = genhalflogistic .numargs
[a] = [0.7, ] * numargs
rv = genhalflogistic (a)
  
print ("RV : \n", rv) 


Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E39A2B2470>

Code #2 : generalized half-logistic random variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = genhalflogistic.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = genhalflogistic.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 [0.24206874 0.66813269 0.75441313 1.05887305 1.8791025  0.64401048
 2.11419943 0.62545354 1.57690457 1.64762353]

Probability Distribution : 
 [0.44618142 0.47576242 0.50958299 0.54863742 0.59426198 0.64829814
 0.71336075 0.7933007  0.89405304 1.02531554]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.02915452 0.05830904 0.08746356 0.11661808 0.14577259
 0.17492711 0.20408163 0.23323615 0.26239067 0.29154519 0.32069971
 0.34985423 0.37900875 0.40816327 0.43731778 0.4664723  0.49562682
 0.52478134 0.55393586 0.58309038 0.6122449  0.64139942 0.67055394
 0.69970845 0.72886297 0.75801749 0.78717201 0.81632653 0.84548105
 0.87463557 0.90379009 0.93294461 0.96209913 0.99125364 1.02040816
 1.04956268 1.0787172  1.10787172 1.13702624 1.16618076 1.19533528
 1.2244898  1.25364431 1.28279883 1.31195335 1.34110787 1.37026239
 1.39941691 1.42857143]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = genhalflogistic.pdf(x, a, 1, 3)
y2 = genhalflogistic.pdf(x, a, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output :

Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32338 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6707 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11936 POSTS0 COMMENTS
Shaida Kate Naidoo
6825 POSTS0 COMMENTS
Ted Musemwa
7089 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6781 POSTS0 COMMENTS