Monday, October 6, 2025
HomeLanguagesHow to compute element-wise remainder of given input tensor in PyTorch?

How to compute element-wise remainder of given input tensor in PyTorch?

In this article, we are going to see how to compute the element-wise remainder in PyTorch. we have two methods to compute element-wise reminders one is torch.remainder() and the other one is torch.fmod() let’s go discuss both of them one by one.

torch.remainder() method 

The PyTorch remainder() method computes the element-wise remainder of the division operation (dividend is divided by divisor). The dividend is a tensor whereas the divisor may be a scalar quantity or tensor. The values must be an integer and float only.  before moving further let’s see the syntax of the given method.

Syntax: torch.remainder(input, other, out=None)

Parameters:

  • input (Tensor or Scalar) : the dividend element.
  • other (Tensor or Scalar) : the divisor element.

Return: This method returns a new tensor with remainder values.

Example 1:

The following program is to compute the element-wise remainder of two single-dimension tensors.

Python3




# importing torch
import torch
  
# define the dividend
tens_1 = torch.tensor([5., -12., 25., -10., 30])
print("Dividend: ", tens_1)
  
# define the divisor
tens_2 = torch.tensor([5., -5., -6., 5., 8.])
print("Divisor: ", tens_2)
  
# compute the remainder
remainder = torch.remainder(tens_1, tens_2)
  
# display result
print("Remainder: ", remainder)


Output:

Dividend:  tensor([  5., -12.,  25., -10.,  30.])

Divisor:  tensor([ 5., -5., -6.,  5.,  8.])

Remainder:  tensor([ 0., -2., -5., -0.,  6.])

Example 2:

The following program is to compute the element-wise remainder of two 2D tensors.

Python3




# importing torch
import torch
  
# define the dividend
tens_1 = torch.tensor([[5., -12.],
                       [-10., 30.], ])
print("\n Dividend: \n", tens_1)
  
# define the divisor
tens_2 = torch.tensor([[5., -5.],
                       [5., 8.], ])
  
print("\n Divisor: \n", tens_2)
  
# compute the remainder
remainder = torch.remainder(tens_1, tens_2)
  
# display result
print("\n Remainder: \n", remainder)


Output:

 Dividend: 
 tensor([[  5., -12.],
        [-10.,  30.]])

 Divisor: 
 tensor([[ 5., -5.],
        [ 5.,  8.]])

 Remainder: 
 tensor([[ 0., -2.],
        [-0.,  6.]])

torch.fmod() method 

This method gives also helps us to compute the element-wise remainder of division by the divisor. The divisor may be a number or a Tensor. When the divisor is zero it will return NaN. before moving further let’s see the syntax of the given method.

Syntax: torch.fmod(input, other)

Parameters:

  • input (Tensor) : the dividend.
  • other (Tensor or Scalar) : the divisor.

Return: This method returns a new tensor with remainder values.

Example 1:

The following program is to compute the element-wise remainder of two single-dimension tensors.

Python3




# importing torch
import torch
  
# define the dividend
tens_1 = torch.tensor([5., -10., -17., 19., 20.])
print("\n\n Dividend: ", tens_1)
  
# define the divisor
tens_2 = torch.tensor([2., 5., 17., 7., 10.])
  
print("\n Divisor: ", tens_2)
  
# compute the remainder using fmod()
remainder = torch.fmod(tens_1, tens_2)
  
# display result
print("\n Remainder: ", remainder)


Output:

 Dividend:  tensor([  5., -10., -17.,  19.,  20.])

 Divisor:  tensor([ 2.,  5., 17.,  7., 10.])

 Remainder:  tensor([1., -0., -0., 5., 0.])

Example 2:

The following program is to compute the element-wise remainder of two 2D tensors.

Python3




# importing torch
import torch
  
# define the dividend
tens_1 = torch.tensor([[16., -12.],
                       [-10., 30.], ])
print("\n\n Dividend: \n", tens_1)
  
# define the divisor
tens_2 = torch.tensor([[5., -6.],
                       [5., 8.], ])
  
print("\n Divisor: \n", tens_2)
  
# compute the remainder using fmod()
remainder = torch.fmod(tens_1, tens_2)
  
# display result
print("\n Remainder:\n", remainder)


Output:

 Dividend: 
 tensor([[ 16., -12.],
        [-10.,  30.]])

 Divisor: 
 tensor([[ 5., -6.],
        [ 5.,  8.]])

 Remainder:
 tensor([[1., -0.],
        [-0., 6.]])
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32338 POSTS0 COMMENTS
Milvus
86 POSTS0 COMMENTS
Nango Kala
6707 POSTS0 COMMENTS
Nicole Veronica
11871 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11936 POSTS0 COMMENTS
Shaida Kate Naidoo
6825 POSTS0 COMMENTS
Ted Musemwa
7089 POSTS0 COMMENTS
Thapelo Manthata
6779 POSTS0 COMMENTS
Umr Jansen
6781 POSTS0 COMMENTS