Friday, September 5, 2025
HomeLanguagesPython – tensorflow.math.unsorted_segment_min()

Python – tensorflow.math.unsorted_segment_min()

TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning  neural networks.

unsorted_segment_min() is used to find the minimum element in segments of Tensor.

Syntax: tensorflow.math.unsorted_segment_min( data, segment_ids, num_segments, name )

Parameter:

  • data: It is a tensor. Allowed dtypes  are float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
  • segment_ids: It’s 1-D tensor with sorted values. It’s size should be equal to  size of first dimension of data. It represents number of distinct segment IDs. Allowed dtypes are int32 and int64.
  • num_segments: It is a Tensor. Allowed dtypes are int32 and int64.
  • name(optional): It defines the name for the operation.

Return: It returns a tensor of dtype as x.

Example 1:

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
data = tf.constant([1, 2, 3])
segment_ids = tf.constant([2, 2, 2])
  
# Printing the input tensor
print('data: ', data)
print('segment_ids: ', segment_ids)
  
# Calculating result
res = tf.math.unsorted_segment_min(data, segment_ids, tf.constant(3))
  
# Printing the result
print('Result: ', res)


Output:

data:  tf.Tensor([1 2 3], shape=(3, ), dtype=int32)
segment_ids:  tf.Tensor([2 2 2], shape=(3, ), dtype=int32)
Result:  tf.Tensor([2147483647 2147483647          1], shape=(3, ), dtype=int32)




Example 2:

Python3




# importing the library
import tensorflow as tf
  
# Initializing the input tensor
data = tf.constant([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
segment_ids = tf.constant([0, 0, 2])
  
# Printing the input tensor
print('data: ', data)
print('segment_ids: ', segment_ids)
  
# Calculating result
res = tf.math.unsorted_segment_min(data, segment_ids, tf.constant(3))
  
# Printing the result
print('Result: ', res)


Output:

data:  tf.Tensor(
[[1 2 3]
 [4 5 6]
 [7 8 9]], shape=(3, 3), dtype=int32)
segment_ids:  tf.Tensor([0 0 2], shape=(3, ), dtype=int32)
Result:  tf.Tensor(
[[         1          2          3]
 [2147483647 2147483647 2147483647]
 [         7          8          9]], shape=(3, 3), dtype=int32)
Dominic
Dominichttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Dominic
32264 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6634 POSTS0 COMMENTS
Nicole Veronica
11801 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11860 POSTS0 COMMENTS
Shaida Kate Naidoo
6749 POSTS0 COMMENTS
Ted Musemwa
7025 POSTS0 COMMENTS
Thapelo Manthata
6698 POSTS0 COMMENTS
Umr Jansen
6718 POSTS0 COMMENTS