With the help of sympy.stats.PowerFunction()
method, we can get the continuous random variable which represents the Power Function distribution.
Syntax :
sympy.stats.PowerFunction(name, alpha, a, b)
Where, a, b and alpha are real number.Return : Return the continuous random variable.
Example #1 :
In this example we can see that by using sympy.stats.PowerFunction()
method, we are able to get the continuous random variable representing power function distribution by using this method.
# Import sympy and PowerFunction from sympy.stats import PowerFunction, density from sympy import Symbol, pprint z = Symbol( "z" ) alpha = Symbol( "alpha" , positive = True ) a = Symbol( "a" , positive = True ) b = Symbol( "b" , positive = True ) # Using sympy.stats.PowerFunction() method X = PowerFunction( "x" , alpha, a, b) gfg = density(X)(z) print (gfg) |
Output :
(-2*a + 2*z)/(-a + b)**2
Example #2 :
# Import sympy and PowerFunction from sympy.stats import PowerFunction, density, variance from sympy import Symbol, pprint z = Symbol( "z" ) alpha = 2 a = 0 b = 1 # Using sympy.stats.PowerFunction() method X = PowerFunction( "x" , alpha, a, b) gfg = density(X)(z) pprint(variance(gfg)) |
Output :
1/18