Thursday, September 4, 2025
HomeData Modelling & AIDeploying a Text Classification Model in Python

Deploying a Text Classification Model in Python

Considerations before the deployment

The data

Source

Source

The features

The environment

The user experience


Creation of a Dash web application

Deployment with Heroku

# after signing in to Heroku and opening the anaconda prompt
# we create a new folder
$ mkdir dash-app-lnclass
$ cd dash-app-lnclass# initialize the folder with git
$ git init
name: dash_app_lnclass #Environment name
dependencies:
  - python=3.6
  - pip:
    - dash
    - dash-renderer
    - dash-core-components
    - dash-html-components
    - dash-table
    - plotly
    - gunicorn # for app deployment
    - nltk
    - scikit-learn
    - beautifulsoup4
    - requests
    - pandas
    - numpy
    - lxml
$ conda env create
$ activate dash_app_lnclass
# the procfile must contain the following line of code
web: gunicorn app:server

# to create the requirements.txt file, we run the following:
$ pip freeze > requirements.txt
$ heroku create lnclass # change my-dash-app to a unique name
$ git add . # add all files to git
$ git commit -m 'Comment'
$ git push heroku master # deploy code to heroku
$ heroku ps:scale web=1  # run the app with a 1 heroku "dyno"

Final thoughts

RELATED ARTICLES

Most Popular

Dominic
32261 POSTS0 COMMENTS
Milvus
81 POSTS0 COMMENTS
Nango Kala
6626 POSTS0 COMMENTS
Nicole Veronica
11795 POSTS0 COMMENTS
Nokonwaba Nkukhwana
11855 POSTS0 COMMENTS
Shaida Kate Naidoo
6747 POSTS0 COMMENTS
Ted Musemwa
7023 POSTS0 COMMENTS
Thapelo Manthata
6695 POSTS0 COMMENTS
Umr Jansen
6714 POSTS0 COMMENTS