Tuesday, January 7, 2025
Google search engine
HomeLanguagesDynamic ProgrammingWays to sum to N using array elements with repetition allowed

Ways to sum to N using array elements with repetition allowed

Given a set of m distinct positive integers and a value ‘N’. The problem is to count the total number of ways we can form ‘N’ by doing sum of the array elements. Repetitions and different arrangements are allowed.

Examples : 

Input: arr = {1, 5, 6}, N = 7
Output: 6
Explanation: The different ways are:
1+1+1+1+1+1+1
1+1+5
1+5+1
5+1+1
1+6
6+1

Input: arr = {12, 3, 1, 9}, N = 14
Output: 150

Recommended Practice

Approach: The approach is based on the concept of dynamic programming. 

countWays(arr, m, N)
        Declare and initialize count[N + 1] = {0}
        count[0] = 1
        for i = 1 to N
            for j = 0 to m - 1
                if i >= arr[j]
                   count[i] += count[i - arr[j]]
        return count[N] 

Below is the implementation of the above approach. 

C++




// C++ implementation to count ways
// to sum up to a given value N
#include <bits/stdc++.h>
 
using namespace std;
 
// function to count the total
// number of ways to sum up to 'N'
int countWays(int arr[], int m, int N)
{
    int count[N + 1];
    memset(count, 0, sizeof(count));
     
    // base case
    count[0] = 1;
     
    // count ways for all values up
    // to 'N' and store the result
    for (int i = 1; i <= N; i++)
        for (int j = 0; j < m; j++)
 
            // if i >= arr[j] then
            // accumulate count for value 'i' as
            // ways to form value 'i-arr[j]'
            if (i >= arr[j])
                count[i] += count[i - arr[j]];
     
    // required number of ways
    return count[N];
     
}
 
// Driver code
int main()
{
    int arr[] = {1, 5, 6};
    int m = sizeof(arr) / sizeof(arr[0]);
    int N = 7;
    cout << "Total number of ways = "
        << countWays(arr, m, N);
    return 0;
}


Java




// Java implementation to count ways 
// to sum up to a given value N
 
class Gfg
{
    static int arr[] = {1, 5, 6};
     
    // method to count the total number
    // of ways to sum up to 'N'
    static int countWays(int N)
    {
        int count[] = new int[N + 1];
         
        // base case
        count[0] = 1;
         
        // count ways for all values up
        // to 'N' and store the result
        for (int i = 1; i <= N; i++)
            for (int j = 0; j < arr.length; j++)
     
                // if i >= arr[j] then
                // accumulate count for value 'i' as
                // ways to form value 'i-arr[j]'
                if (i >= arr[j])
                    count[i] += count[i - arr[j]];
         
        // required number of ways
        return count[N];
         
    }
     
    // Driver code
    public static void main(String[] args)
    {
        int N = 7;
        System.out.println("Total number of ways = "
                                    + countWays(N));
    }
}


Python3




# Python3 implementation to count
# ways to sum up to a given value N
 
# Function to count the total
# number of ways to sum up to 'N'
def countWays(arr, m, N):
 
    count = [0 for i in range(N + 1)]
     
    # base case
    count[0] = 1
     
    # Count ways for all values up
    # to 'N' and store the result
    for i in range(1, N + 1):
        for j in range(m):
 
            # if i >= arr[j] then
            # accumulate count for value 'i' as
            # ways to form value 'i-arr[j]'
            if (i >= arr[j]):
                count[i] += count[i - arr[j]]
     
    # required number of ways
    return count[N]
     
# Driver Code
arr = [1, 5, 6]
m = len(arr)
N = 7
print("Total number of ways = ",
           countWays(arr, m, N))
            
# This code is contributed by Anant Agarwal.


C#




// C# implementation to count ways 
// to sum up to a given value N
using System;
 
class Gfg
{
    static int []arr = {1, 5, 6};
     
    // method to count the total number
    // of ways to sum up to 'N'
    static int countWays(int N)
    {
        int []count = new int[N+1];
         
        // base case
        count[0] = 1;
         
        // count ways for all values up
        // to 'N' and store the result
        for (int i = 1; i <= N; i++)
            for (int j = 0; j < arr.Length; j++)
     
                // if i >= arr[j] then
                // accumulate count for value 'i' as
                // ways to form value 'i-arr[j]'
                if (i >= arr[j])
                    count[i] += count[i - arr[j]];
         
        // required number of ways
        return count[N];
         
    }
     
    // Driver code
    public static void Main()
    {
        int N = 7;
        Console.Write("Total number of ways = "
                                    + countWays(N));
    }
}
 
//This code is contributed by nitin mittal.


PHP




<?php
// PHP implementation to count ways
// to sum up to a given value N
 
// function to count the total
// number of ways to sum up to 'N'
function countWays($arr, $m, $N)
{
    $count = array_fill(0,$N + 1,0);
     
    // base case
    $count[0] = 1;
     
    // count ways for all values up
    // to 'N' and store the result
    for ($i = 1; $i <= $N; $i++)
        for ($j = 0; $j < $m; $j++)
 
            // if i >= arr[j] then
            // accumulate count for value 'i' as
            // ways to form value 'i-arr[j]'
            if ($i >= $arr[$j])
                $count[$i] += $count[$i - $arr[$j]];
     
    // required number of ways
    return $count[$N];
     
}
 
// Driver code
$arr = array(1, 5, 6);
$m count($arr);
$N = 7;
echo "Total number of ways = ",countWays($arr, $m, $N);
 
// This code is contributed by Ryuga
?>


Javascript




<script>
 
    // JavaScript implementation to count ways 
    // to sum up to a given value N
     
    let arr = [1, 5, 6];
       
    // method to count the total number
    // of ways to sum up to 'N'
    function countWays(N)
    {
        let count = new Array(N+1);
        count.fill(0);
           
        // base case
        count[0] = 1;
           
        // count ways for all values up
        // to 'N' and store the result
        for (let i = 1; i <= N; i++)
            for (let j = 0; j < arr.length; j++)
       
                // if i >= arr[j] then
                // accumulate count for value 'i' as
                // ways to form value 'i-arr[j]'
                if (i >= arr[j])
                    count[i] += count[i - arr[j]];
           
        // required number of ways
        return count[N];
           
    }
     
    let N = 7;
      document.write("Total number of ways = " + countWays(N));
     
</script>


Output

Total number of ways = 6

Time Complexity: O(N*m)
Auxiliary Space: O(N), as an additional array of size (N + 1) is required.

This article is contributed by Ayush Jauhari. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments