Given an integer N, the task is to count the minimum steps required to reduce the value of N to 0 by performing the following two operations:
- Consider integers A and B where N = A * B (A != 1 and B != 1), reduce N to min(A, B)
- Decrease the value of N by 1
Examples :
Input: N = 3
Output: 3
Explanation:
Steps involved are 3 -> 2 -> 1 -> 0
Therefore, the minimum steps required is 3.
Input: N = 4
Output: 3
Explanation:
Steps involved are 4->2->1->0.
Therefore, the minimum steps required is 3.
Naive Approach: The idea is to use the concept of Dynamic Programming. Follow the steps below to solve the problem:
- The simple solution to this problem is to replace N with each possible value until it is not 0.
- When N reaches 0, compare the count of moves with the minimum obtained so far to obtain the optimal answer.
- Finally, print the minimum steps calculated.
Illustration:
N = 4,
- On applying the first rule, factors of 4 are [ 1, 2, 4 ].
Therefore, all possible pairs (a, b) are (1 * 4), (2 * 2), (4 * 1).
Only pair satisfying the condition (a!=1 and b!=1) is (2, 2) . Therefore, reduce 4 to 2.
Finally, reduce N to 0, in 3 steps(4 -> 2 -> 1 -> 0)- On applying the second rule, steps required is 4, (4 -> 3 -> 2 -> 1 -> 0).
Recursive tree for N = 4 is 4 / \ 3 2(2*2) | | 2 1 | | 1 0 | 0
- Therefore, minimum steps required to reduce N to 0 is 3.
Therefore, the relation is:
f(N) = 1 + min( f(N-1), min(f(x)) ), where N % x == 0 and x is in range [2, K] where K = sqrt(N)
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to count the minimum // steps required to reduce n int downToZero( int n) { // Base case if (n <= 3) return n; // Allocate memory for storing // intermediate results vector< int > dp(n + 1, -1); // Store base values dp[0] = 0; dp[1] = 1; dp[2] = 2; dp[3] = 3; // Stores square root // of each number int sqr; for ( int i = 4; i <= n; i++) { // Compute square root sqr = sqrt (i); int best = INT_MAX; // Use rule 1 to find optimized // answer while (sqr > 1) { // Check if it perfectly divides n if (i % sqr == 0) { best = min(best, 1 + dp[sqr]); } sqr--; } // Use of rule 2 to find // the optimized answer best = min(best, 1 + dp[i - 1]); // Store computed value dp[i] = best; } // Return answer return dp[n]; } // Driver Code int main() { int n = 4; cout << downToZero(n); return 0; } |
Java
// Java program to implement // the above approach class GFG{ // Function to count the minimum // steps required to reduce n static int downToZero( int n) { // Base case if (n <= 3 ) return n; // Allocate memory for storing // intermediate results int []dp = new int [n + 1 ]; for ( int i = 0 ; i < n + 1 ; i++) dp[i] = - 1 ; // Store base values dp[ 0 ] = 0 ; dp[ 1 ] = 1 ; dp[ 2 ] = 2 ; dp[ 3 ] = 3 ; // Stores square root // of each number int sqr; for ( int i = 4 ; i <= n; i++) { // Compute square root sqr = ( int )Math.sqrt(i); int best = Integer.MAX_VALUE; // Use rule 1 to find optimized // answer while (sqr > 1 ) { // Check if it perfectly divides n if (i % sqr == 0 ) { best = Math.min(best, 1 + dp[sqr]); } sqr--; } // Use of rule 2 to find // the optimized answer best = Math.min(best, 1 + dp[i - 1 ]); // Store computed value dp[i] = best; } // Return answer return dp[n]; } // Driver Code public static void main(String[] args) { int n = 4 ; System.out.print(downToZero(n)); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program to implement # the above approach import math import sys # Function to count the minimum # steps required to reduce n def downToZero(n): # Base case if (n < = 3 ): return n # Allocate memory for storing # intermediate results dp = [ - 1 ] * (n + 1 ) # Store base values dp[ 0 ] = 0 dp[ 1 ] = 1 dp[ 2 ] = 2 dp[ 3 ] = 3 # Stores square root # of each number for i in range ( 4 , n + 1 ): # Compute square root sqr = ( int )(math.sqrt(i)) best = sys.maxsize # Use rule 1 to find optimized # answer while (sqr > 1 ): # Check if it perfectly divides n if (i % sqr = = 0 ): best = min (best, 1 + dp[sqr]) sqr - = 1 # Use of rule 2 to find # the optimized answer best = min (best, 1 + dp[i - 1 ]) # Store computed value dp[i] = best # Return answer return dp[n] # Driver Code if __name__ = = "__main__" : n = 4 print (downToZero(n)) # This code is contributed by chitranayal |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to count the minimum // steps required to reduce n static int downToZero( int n) { // Base case if (n <= 3) return n; // Allocate memory for storing // intermediate results int []dp = new int [n + 1]; for ( int i = 0; i < n + 1; i++) dp[i] = -1; // Store base values dp[0] = 0; dp[1] = 1; dp[2] = 2; dp[3] = 3; // Stores square root // of each number int sqr; for ( int i = 4; i <= n; i++) { // Compute square root sqr = ( int )Math.Sqrt(i); int best = int .MaxValue; // Use rule 1 to find optimized // answer while (sqr > 1) { // Check if it perfectly divides n if (i % sqr == 0) { best = Math.Min(best, 1 + dp[sqr]); } sqr--; } // Use of rule 2 to find // the optimized answer best = Math.Min(best, 1 + dp[i - 1]); // Store computed value dp[i] = best; } // Return answer return dp[n]; } // Driver Code public static void Main(String[] args) { int n = 4; Console.Write(downToZero(n)); } } // This code is contributed by amal kumar choubey |
Javascript
<script> // Javascript Program to implement // the above approach // Function to count the minimum // steps required to reduce n function downToZero(n) { // Base case if (n <= 3) return n; // Allocate memory for storing // intermediate results let dp = new Array(n + 1) dp.fill(-1); // Store base values dp[0] = 0; dp[1] = 1; dp[2] = 2; dp[3] = 3; // Stores square root // of each number let sqr; for (let i = 4; i <= n; i++) { // Compute square root sqr = Math.sqrt(i); let best = Number.MAX_VALUE; // Use rule 1 to find optimized // answer while (sqr > 1) { // Check if it perfectly divides n if (i % sqr == 0) { best = Math.min(best, 1 + dp[sqr]); } sqr--; } // Use of rule 2 to find // the optimized answer best = Math.min(best, 1 + dp[i - 1]); // Store computed value dp[i] = best; } // Return answer return dp[n]; } let n = 4; document.write(downToZero(n)); // This code is contributed by divyesh072019. </script> |
3
Time complexity: O(N * sqrt(n))
Auxiliary Space: O(N)
Efficient Approach: The idea is to observe that it is possible to replace N by N’ where N’ = min(a, b) (N = a * b) (a != 1 and b != 1).
- If N is even, then the smallest value that divides N is 2. Therefore, directly calculate f(N) = 1 + f(2) = 3.
- If N is odd, then reduce N by 1 from it i.e N = N – 1. Apply the same logic as used for even numbers. Therefore, for odd numbers, the minimum steps required is 4.
Below is the implementation of the above approach:
C++
// C++ Program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the minimum // steps required to reduce n int downToZero( int n) { // Base case if (n <= 3) return n; // Return answer based on // parity of n return n % 2 == 0 ? 3 : 4; } // Driver Code int main() { int n = 4; cout << downToZero(n); return 0; } |
Java
// Java Program to implement // the above approach class GFG{ // Function to find the minimum // steps required to reduce n static int downToZero( int n) { // Base case if (n <= 3 ) return n; // Return answer based on // parity of n return n % 2 == 0 ? 3 : 4 ; } // Driver Code public static void main(String[] args) { int n = 4 ; System.out.println(downToZero(n)); } } // This code is contributed by rock_cool |
Python3
# Python3 Program to implement # the above approach # Function to find the minimum # steps required to reduce n def downToZero(n): # Base case if (n < = 3 ): return n; # Return answer based on # parity of n if (n % 2 = = 0 ): return 3 ; else : return 4 ; # Driver Code if __name__ = = '__main__' : n = 4 ; print (downToZero(n)); # This code is contributed by Rohit_ranjan |
C#
// C# Program to implement // the above approach using System; class GFG{ // Function to find the minimum // steps required to reduce n static int downToZero( int n) { // Base case if (n <= 3) return n; // Return answer based on // parity of n return n % 2 == 0 ? 3 : 4; } // Driver Code public static void Main(String[] args) { int n = 4; Console.WriteLine(downToZero(n)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript Program to implement // the above approach // Function to find the minimum // steps required to reduce n function downToZero(n) { // Base case if (n <= 3) return n; // Return answer based on // parity of n return n % 2 == 0 ? 3 : 4; } let n = 4; document.write(downToZero(n)); // This code is contributed by divyeshrabadiya07. </script> |
3
Time complexity: O(1)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!