Given a number N, find the number of ways you can draw N chords in a circle with 2*N points such that no 2 chords intersect.
Two ways are different if there exists a chord which is present in one way and not in other.
Examples:
Input : N = 2 Output : 2 Explanation: If points are numbered 1 to 4 in clockwise direction, then different ways to draw chords are: {(1-2), (3-4)} and {(1-4), (2-3)} Input : N = 1 Output : 1 Explanation: Draw a chord between points 1 and 2.
If we draw a chord between any two points, can you observe the current set of points getting broken into two smaller sets S_1 and S_2. If we draw a chord from a point in S_1 to a point in S_2, it will surely intersect the chord we’ve just drawn.
So, we can arrive at a recurrence that Ways(n) = sum[i = 0 to n-1] { Ways(i)*Ways(n-i-1) }.
Here we iterate over i, assuming that size of one of the sets is i and size of another set automatically is (n-i-1) since we’ve already used a pair of points and i pair of points in one set.
C++
// cpp code to count ways // to divide circle using // N non-intersecting chords. #include <bits/stdc++.h> using namespace std; int chordCnt( int A){ // n = no of points required int n = 2 * A; // dp array containing the sum int dpArray[n + 1]={ 0 }; dpArray[0] = 1; dpArray[2] = 1; for ( int i=4;i<=n;i+=2){ for ( int j=0;j<i-1;j+=2){ dpArray[i] += (dpArray[j]*dpArray[i-2-j]); } } // returning the required number return dpArray[n]; } // Driver function int main() { int N; N = 2; cout<<chordCnt( N)<< '\n' ; N = 1; cout<<chordCnt( N)<< '\n' ; N = 4; cout<<chordCnt( N)<< '\n' ; return 0; } // This code is contributed by Gitanjali. |
Java
// Java code to count ways // to divide circle using // N non-intersecting chords. import java.io.*; class GFG { static int chordCnt( int A) { // n = no of points required int n = 2 * A; // dp array containing the sum int [] dpArray = new int [n + 1 ]; dpArray[ 0 ] = 1 ; dpArray[ 2 ] = 1 ; for ( int i = 4 ; i <= n; i += 2 ) { for ( int j = 0 ; j < i - 1 ; j += 2 ) { dpArray[i] += (dpArray[j] * dpArray[i - 2 - j]); } } // returning the required number return dpArray[n]; } public static void main(String[] args) { int N; N = 2 ; System.out.println(chordCnt(N)); N = 1 ; System.out.println(chordCnt(N)); N = 4 ; System.out.println(chordCnt(N)); } } // This code is contributed by Gitanjali. |
Python 3
# python code to count ways to divide # circle using N non-intersecting chords. def chordCnt( A): # n = no of points required n = 2 * A # dp array containing the sum dpArray = [ 0 ] * (n + 1 ) dpArray[ 0 ] = 1 dpArray[ 2 ] = 1 for i in range ( 4 , n + 1 , 2 ): for j in range ( 0 , i - 1 , 2 ): dpArray[i] + = (dpArray[j] * dpArray[i - 2 - j]) # returning the required number return int (dpArray[n]) # driver code N = 2 print (chordCnt( N)) N = 1 print (chordCnt( N)) N = 4 print (chordCnt( N)) |
C#
// C# code to count ways to divide // circle using N non-intersecting chords. using System; class GFG { static int chordCnt( int A) { // n = no of points required int n = 2 * A; // dp array containing the sum int [] dpArray = new int [n + 1]; dpArray[0] = 1; dpArray[2] = 1; for ( int i = 4; i <= n; i += 2) { for ( int j = 0; j < i - 1; j += 2) { dpArray[i] += (dpArray[j] * dpArray[i - 2 - j]); } } // returning the required number return dpArray[n]; } // Driver code public static void Main() { int N; N = 2; Console.WriteLine(chordCnt(N)); N = 1; Console.WriteLine(chordCnt(N)); N = 4; Console.WriteLine(chordCnt(N)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP code to count ways // to divide circle using // N non-intersecting chords. function chordCnt( $A ) { // n = no of points required $n = 2 * $A ; // dp array containing the sum $dpArray = array_fill (0, $n + 1, 0); $dpArray [0] = 1; $dpArray [2] = 1; for ( $i = 4; $i <= $n ; $i += 2) { for ( $j = 0; $j < $i - 1; $j += 2) { $dpArray [ $i ] += ( $dpArray [ $j ] * $dpArray [ $i - 2 - $j ]); } } // returning the required number return $dpArray [ $n ]; } // Driver Code $N = 2; echo chordCnt( $N ), "\n" ; $N = 1; echo chordCnt( $N ), "\n" ; $N = 4; echo chordCnt( $N ), "\n" ; // This code is contributed by Ryuga ?> |
Javascript
<script> // JavaScript code to count ways // to divide circle using // N non-intersecting chords. function chordCnt( A){ // n = no of points required var n = 2 * A; // dp array containing the sum var dpArray = Array(n+1).fill(0); dpArray[0] = 1; dpArray[2] = 1; for ( var i=4;i<=n;i+=2){ for ( var j=0;j<i-1;j+=2){ dpArray[i] += (dpArray[j]*dpArray[i-2-j]); } } // returning the required number return dpArray[n]; } // Driver function var N; N = 2; document.write( chordCnt( N) + '<br>' ); N = 1; document.write( chordCnt( N) + '<br>' ); N = 4; document.write( chordCnt( N) + '<br>' ); </script> |
Output:
2 1 14
Time Complexity: O(n2)
Auxiliary Space: O(n)
Please suggest if someone has a better solution which is more efficient in terms of space and time.
This article is contributed by Aarti_Rathi. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!