Wednesday, January 1, 2025
Google search engine
HomeLanguagesDynamic ProgrammingDifferent ways to sum n using numbers greater than or equal to...

Different ways to sum n using numbers greater than or equal to m

Given two natural number n and m. The task is to find the number of ways in which the numbers that are greater than or equal to m can be added to get the sum n.

Examples: 

Input : n = 3, m = 1
Output : 3
Following are three different ways
to get sum n such that each term is
greater than or equal to m
1 + 1 + 1, 1 + 2, 3 

Input : n = 2, m = 1
Output : 2
Two ways are 1 + 1 and 2
 

Method 1: 

The idea is to use Dynamic Programming by define 2D matrix, say dp[][]. dp[i][j] define the number of ways to get sum i using the numbers greater than or equal to j. So dp[i][j] can be defined as:

If i < j, dp[i][j] = 0, because we cannot achieve smaller sum of i using numbers greater than or equal to j.
If i = j, dp[i][j] = 1, because there is only one way to show sum i using number i which is equal to j.
Else dp[i][j] = dp[i][j+1] + dp[i-j][j], because obtaining a sum i using numbers greater than or equal to j is equal to the sum of obtaining a sum of i using numbers greater than or equal to j+1 and obtaining the sum of i-j using numbers greater than or equal to j.

Below is the implementation of this approach: 

C++




// CPP Program to find number of ways to
// which numbers that are greater than
// given number can be added to get sum.
#include <bits/stdc++.h>
#define MAX 100
using namespace std;
 
// Return number of ways to which numbers
// that are greater than given number can
// be added to get sum.
int numberofways(int n, int m)
{
    int dp[n+2][n+2];
    memset(dp, 0, sizeof(dp));
 
    dp[0][n + 1] = 1;
 
    // Filling the table. k is for numbers
    // greater than or equal that are allowed.
    for (int k = n; k >= m; k--) {
 
        // i is for sum
        for (int i = 0; i <= n; i++) {
 
            // initializing dp[i][k] to number
            // ways to get sum using numbers
            // greater than or equal k+1
            dp[i][k] = dp[i][k + 1];
 
            // if i > k
            if (i - k >= 0)
                dp[i][k] = (dp[i][k] + dp[i - k][k]);
        }
    }
 
    return dp[n][m];
}
 
// Driver Program
int main()
{
    int n = 3, m = 1;
    cout << numberofways(n, m) << endl;
    return 0;
}


Java




// Java Program to find number of ways to
// which numbers that are greater than
// given number can be added to get sum.
import java.io.*;
 
class GFG {
     
    // Return number of ways to which numbers
    // that are greater than given number can
    // be added to get sum.
    static int numberofways(int n, int m)
    {
        int dp[][]=new int[n+2][n+2];
         
        dp[0][n + 1] = 1;
      
        // Filling the table. k is for numbers
        // greater than or equal that are allowed.
        for (int k = n; k >= m; k--) {
      
            // i is for sum
            for (int i = 0; i <= n; i++) {
      
                // initializing dp[i][k] to number
                // ways to get sum using numbers
                // greater than or equal k+1
                dp[i][k] = dp[i][k + 1];
      
                // if i > k
                if (i - k >= 0)
                    dp[i][k] = (dp[i][k] + dp[i - k][k]);
            }
        }
      
        return dp[n][m];
    }
      
    // Driver Program
    public static void main(String args[])
    {
        int n = 3, m = 1;
        System.out.println(numberofways(n, m));
    }
}
 
/*This code is contributed by Nikita tiwari.*/


Python3




# Python3 Program to find number of ways to
# which numbers that are greater than
# given number can be added to get sum.
MAX = 100
 
# Return number of ways to which numbers
# that are greater than given number can
# be added to get sum.
 
 
def numberofways(n, m):
 
    dp = [[0 for i in range(n+2)] for j in range(n+2)]
 
    dp[0][n + 1] = 1
 
    # Filling the table. k is for numbers
    # greater than or equal that are allowed.
    for k in range(n, m-1, -1):
 
        # i is for sum
        for i in range(n + 1):
 
            # initializing dp[i][k] to number
            # ways to get sum using numbers
            # greater than or equal k+1
            dp[i][k] = dp[i][k + 1]
 
            # if i > k
            if (i - k >= 0):
                dp[i][k] = (dp[i][k] + dp[i - k][k])
 
    return dp[n][m]
 
 
# Driver Code
if __name__ == "__main__":
 
    n, m = 3, 1
    print(numberofways(n, m))
 
# This code is contributed by Ryuga


C#




// C# program to find number of ways to
// which numbers that are greater than
// given number can be added to get sum.
using System;
 
class GFG {
 
    // Return number of ways to which numbers
    // that are greater than given number can
    // be added to get sum.
    static int numberofways(int n, int m)
    {
        int[, ] dp = new int[n + 2, n + 2];
 
        dp[0, n + 1] = 1;
 
        // Filling the table. k is for numbers
        // greater than or equal that are allowed.
        for (int k = n; k >= m; k--) {
 
            // i is for sum
            for (int i = 0; i <= n; i++) {
 
                // initializing dp[i][k] to number
                // ways to get sum using numbers
                // greater than or equal k+1
                dp[i, k] = dp[i, k + 1];
 
                // if i > k
                if (i - k >= 0)
                    dp[i, k] = (dp[i, k] + dp[i - k, k]);
            }
        }
 
        return dp[n, m];
    }
 
    // Driver Program
    public static void Main()
    {
        int n = 3, m = 1;
        Console.WriteLine(numberofways(n, m));
    }
}
 
/*This code is contributed by vt_m.*/


PHP




<?php
 
// PHP Program to find number of ways to
// which numbers that are greater than
// given number can be added to get sum.
 
$MAX = 100;
 
// Return number of ways to which numbers
// that are greater than given number can
// be added to get sum.
function numberofways($n, $m)
{
    global $MAX;
    $dp = array_fill(0, $n + 2, array_fill(0, $n+2, NULL));
 
    $dp[0][$n + 1] = 1;
 
    // Filling the table. k is for numbers
    // greater than or equal that are allowed.
    for ($k = $n; $k >= $m; $k--)
    {
 
        // i is for sum
        for ($i = 0; $i <= $n; $i++)
        {
 
            // initializing dp[i][k] to number
            // ways to get sum using numbers
            // greater than or equal k+1
            $dp[$i][$k] = $dp[$i][$k + 1];
 
            // if i > k
            if ($i - $k >= 0)
                $dp[$i][$k] = ($dp[$i][$k] + $dp[$i - $k][$k]);
        }
    }
 
    return $dp[$n][$m];
}
 
    // Driver Program
    $n = 3;
    $m = 1;
    echo numberofways($n, $m) ;
    return 0;
     
    // This code is contributed by ChitraNayal
?>


Javascript




<script>
// Javascript Program to find number of ways to
// which numbers that are greater than
// given number can be added to get sum.
     
    // Return number of ways to which numbers
    // that are greater than given number can
    // be added to get sum.
    function numberofways(n,m)
    {
        let dp=new Array(n+2);
        for(let i=0;i<dp.length;i++)
        {
            dp[i]=new Array(n+2);
            for(let j=0;j<dp[i].length;j++)
            {
                dp[i][j]=0;
            }
        }
           
        dp[0][n + 1] = 1;
        
        // Filling the table. k is for numbers
        // greater than or equal that are allowed.
        for (let k = n; k >= m; k--) {
        
            // i is for sum
            for (let i = 0; i <= n; i++) {
        
                // initializing dp[i][k] to number
                // ways to get sum using numbers
                // greater than or equal k+1
                dp[i][k] = dp[i][k + 1];
        
                // if i > k
                if (i - k >= 0)
                    dp[i][k] = (dp[i][k] + dp[i - k][k]);
            }
        }
        
        return dp[n][m];
    }
     
    // Driver Program
    let n = 3, m = 1;
    document.write(numberofways(n, m));
     
    // This code is contributed by avanitrachhadiya2155
</script>


Output

3

Time Complexity: O((n-m)*n)
Auxiliary Space: O(n*n)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments