Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingNumber of ways to get a given sum with n number of...

Number of ways to get a given sum with n number of m-faced dices

Given n dices, each with m faces, numbered from 1 to m, find the number of ways to get a given sum X. X is the summation of values on each face when all the dice are thrown.
Examples: 
 

Input : faces = 4 throws = 2 sum =4 
Output :
Ways to reach sum equal to 4 in 2 throws can be { (1, 3), (2, 2), (3, 1) }
Input : faces = 6 throws = 3 sum = 12 
Output : 25
 

 

Approach: 
Basically, it is asked to achieve sum in n number of operations using the values in the range [1…m]. 
Use dynamic programming top-down methodology for this problem. The steps are: 
 

  • Base Cases: 
    1. If (sum == 0 and noofthrowsleft ==0) return 1 . It means that sum x has 
      been achieved.
    2. If (sum < 0 and noofthrowsleft ==0) return 0.It means that sum x has not 
      been achieved in all throws.
  • If present sum with present noofthrowsleft is already achieved then return it from the table instead of re computation.
  • Then we will loop through all the values of faces from i=[1..m] and recursively moving to achieve sum-i and also decrease the noofthrowsleft by 1.
  • Finally, we will store current values in the dp array

Below is the implementation of the above method: 
 

C++




// C++ function to calculate the number of
// ways to achieve sum x in n no of throws
#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007
int dp[55][55];
 
// Function to calculate recursively the
// number of ways to get sum in given
// throws and [1..m] values
int NoofWays(int face, int throws, int sum)
{
    // Base condition 1
    if (sum == 0 && throws == 0)
        return 1;
 
    // Base condition 2
    if (sum < 0 || throws == 0)
        return 0;
 
    // If value already calculated donot
    // move into re-computation
    if (dp[throws][sum] != -1)
        return dp[throws][sum];
 
    int ans = 0;
    for (int i = 1; i <= face; i++) {
 
        // Recursively moving for sum-i in
        // throws-1 no of throws left
        ans += NoofWays(face, throws - 1, sum - i);
    }
 
    // Inserting present values in dp
    return dp[throws][sum] = ans;
}
 
// Driver function
int main()
{
    int faces = 6, throws = 3, sum = 12;
 
    memset(dp, -1, sizeof dp);
 
    cout << NoofWays(faces, throws, sum) << endl;
 
    return 0;
}


Java




// Java function to calculate the number of
// ways to achieve sum x in n no of throwsVal
class GFG
{
 
    static int mod = 1000000007;
    static int[][] dp = new int[55][55];
 
    // Function to calculate recursively the
    // number of ways to get sum in given
    // throwsVal and [1..m] values
    static int NoofWays(int face, int throwsVal, int sum)
    {
        // Base condition 1
        if (sum == 0 && throwsVal == 0)
        {
            return 1;
        }
 
        // Base condition 2
        if (sum < 0 || throwsVal == 0)
        {
            return 0;
        }
 
        // If value already calculated donot
        // move into re-computation
        if (dp[throwsVal][sum] != -1)
        {
            return dp[throwsVal][sum];
        }
 
        int ans = 0;
        for (int i = 1; i <= face; i++)
        {
 
            // Recursively moving for sum-i in
            // throwsVal-1 no of throwsVal left
            ans += NoofWays(face, throwsVal - 1, sum - i);
        }
 
        // Inserting present values in dp
        return dp[throwsVal][sum] = ans;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int faces = 6, throwsVal = 3, sum = 12;
        for (int i = 0; i < 55; i++)
        {
            for (int j = 0; j < 55; j++)
            {
                dp[i][j] = -1;
            }
        }
 
        System.out.println(NoofWays(faces, throwsVal, sum));
    }
}
 
// This code is contributed by 29AjayKumar


Python3




# Python3 function to calculate the number of
# ways to achieve sum x in n no of throws
import numpy as np
 
mod = 1000000007;
 
dp = np.zeros((55,55));
 
# Function to calculate recursively the
# number of ways to get sum in given
# throws and [1..m] values
def NoofWays(face, throws, sum) :
 
    # Base condition 1
    if (sum == 0 and throws == 0) :
        return 1;
 
    # Base condition 2
    if (sum < 0 or throws == 0) :
        return 0;
 
    # If value already calculated donot
    # move into re-computation
    if (dp[throws][sum] != -1) :
        return dp[throws][sum];
 
    ans = 0;
    for i in range(1, face + 1) :
 
        # Recursively moving for sum-i in
        # throws-1 no of throws left
        ans += NoofWays(face, throws - 1, sum - i);
 
    # Inserting present values in dp
    dp[throws][sum] = ans;
     
    return ans;
 
 
# Driver function
if __name__ == "__main__" :
 
    faces = 6; throws = 3; sum = 12;
 
    for i in range(55) :
        for j in range(55) :
            dp[i][j] = -1
 
    print(NoofWays(faces, throws, sum)) ;
     
# This code is contributed by AnkitRai01


C#




// C# function to calculate the number of
// ways to achieve sum x in n no of throwsVal
using System;
 
class GFG
{
     
    static int[,]dp = new int[55,55];
 
    // Function to calculate recursively the
    // number of ways to get sum in given
    // throwsVal and [1..m] values
    static int NoofWays(int face, int throwsVal, int sum)
    {
        // Base condition 1
        if (sum == 0 && throwsVal == 0)
        {
            return 1;
        }
 
        // Base condition 2
        if (sum < 0 || throwsVal == 0)
        {
            return 0;
        }
 
        // If value already calculated donot
        // move into re-computation
        if (dp[throwsVal,sum] != -1)
        {
            return dp[throwsVal,sum];
        }
 
        int ans = 0;
        for (int i = 1; i <= face; i++)
        {
 
            // Recursively moving for sum-i in
            // throwsVal-1 no of throwsVal left
            ans += NoofWays(face, throwsVal - 1, sum - i);
        }
 
        // Inserting present values in dp
        return dp[throwsVal,sum] = ans;
    }
 
    // Driver code
    static public void Main ()
    {
        int faces = 6, throwsVal = 3, sum = 12;
        for (int i = 0; i < 55; i++)
        {
            for (int j = 0; j < 55; j++)
            {
                dp[i,j] = -1;
            }
        }
 
    Console.WriteLine(NoofWays(faces, throwsVal, sum));
    }
}
 
// This code is contributed by ajit.


Javascript




<script>
 
// Javascript function to calculate the number of
// ways to achieve sum x in n no of throws
 
const mod = 1000000007;
let dp = new Array(55);
for (let i = 0; i < 55; i++)
    dp[i] = new Array(55).fill(-1);
 
// Function to calculate recursively the
// number of ways to get sum in given
// throws and [1..m] values
function NoofWays(face, throws, sum)
{
    // Base condition 1
    if (sum == 0 && throws == 0)
        return 1;
 
    // Base condition 2
    if (sum < 0 || throws == 0)
        return 0;
 
    // If value already calculated donot
    // move into re-computation
    if (dp[throws][sum] != -1)
        return dp[throws][sum];
 
    let ans = 0;
    for (let i = 1; i <= face; i++) {
 
        // Recursively moving for sum-i in
        // throws-1 no of throws left
        ans += NoofWays(face, throws - 1, sum - i);
    }
 
    // Inserting present values in dp
    return dp[throws][sum] = ans;
}
 
// Driver function
    let faces = 6, throws = 3, sum = 12;
    document.write(NoofWays(faces, throws, sum));
 
</script>


Output: 

25

 

Time complexity : O(throws*faces*sum) 
Space complexity : O(faces*sum)
 

Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a 2D array DP to store the solution of the subproblems and initialize it with 0.
  • Initialize the DP with base cases.
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
  • Return the final solution stored in dp[throws][sum] .

Implementation :

C++




// c++ code above approach
 
#include <bits/stdc++.h>
using namespace std;
#define mod 1000000007
 
int dp[55][55];
 
// Function to calculate recursively the
// number of ways to get sum in given
// throws and [1..m] values
int NoofWays(int face, int throws, int sum)
{
    memset(dp, 0, sizeof dp);
 
    // Initialize base conditions
    for (int i = 1; i <= face && i <= sum; i++)
        dp[1][i] = 1;
     
    // iterate over subproblems to get the current solution
    for (int t = 2; t <= throws; t++)
    {
        for (int s = 1; s <= sum; s++)
        {
            for (int i = 1; i <= face && i < s; i++)
            {  
                 
                // get current value from previous computations
                dp[t][s] += dp[t - 1][s - i];
                dp[t][s] %= mod;
            }
        }
    }
     
    // return answer
    return dp[throws][sum];
}
     
// Driver code
int main()
{
    int faces = 6, throws = 3, sum = 12;
     
    // function call
    cout << NoofWays(faces, throws, sum) << endl;
 
    return 0;
}


Java




import java.util.*;
 
public class Main {
    static int mod = 1000000007;
    static int[][] dp = new int[55][55];
 
    // Function to calculate recursively the
    // number of ways to get sum in given
    // throws and [1..m] values
    static int NoofWays(int face, int throws_, int sum)
    {
        Arrays.stream(dp).forEach(a -> Arrays.fill(a, 0));
 
        // Initialize base conditions
        for (int i = 1; i <= face && i <= sum; i++)
            dp[1][i] = 1;
 
        // iterate over subproblems to get the current
        // solution
        for (int t = 2; t <= throws_; t++) {
            for (int s = 1; s <= sum; s++) {
                for (int i = 1; i <= face && i < s; i++) {
 
                    // get current value from previous
                    // computations
                    dp[t][s] += dp[t - 1][s - i];
                    dp[t][s] %= mod;
                }
            }
        }
 
        // return answer
        return dp[throws_][sum];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int faces = 6, throws_ = 3, sum = 12;
 
        // function call
        System.out.println(NoofWays(faces, throws_, sum));
    }
}


Python3




mod = 1000000007
 
# Function to calculate recursively the
# number of ways to get sum in given
# throws and [1..m] values
def NoofWays(face, throws, sum):
    dp = [[0 for i in range(sum + 1)] for j in range(throws + 1)]
 
    # Initialize base conditions
    for i in range(1, face + 1):
        if i <= sum:
            dp[1][i] = 1
 
    # iterate over subproblems to get the current solution
    for t in range(2, throws + 1):
        for s in range(1, sum + 1):
            for i in range(1, face + 1):
                if i < s:
                    # get current value from previous computations
                    dp[t][s] += dp[t - 1][s - i]
                    dp[t][s] %= mod
 
    # return answer
    return dp[throws][sum]
 
 
faces = 6
throws = 3
sum = 12
 
# function call
print(NoofWays(faces, throws, sum))


C#




// C# code for above approach
 
using System;
 
class MainClass {
 
    // Function to calculate recursively the
    // number of ways to get sum in given
    // throws and [1..m] values
    public static int NoofWays(int face, int throws, int sum)
    {
        int[, ] dp = new int[55, 55];
 
        // Initialize base conditions
        for (int i = 1; i <= face && i <= sum; i++)
            dp[1, i] = 1;
 
        // iterate over subproblems to
        // get the current solution
        for (int t = 2; t <= throws; t++) {
            for (int s = 1; s <= sum; s++) {
                for (int i = 1; i <= face && i < s; i++) {
 
                    // Get current value from
                    // previous computations
                    dp[t, s] += dp[t - 1, s - i];
                    dp[t, s] %= 1000000007;
                }
            }
        }
 
        // return answer
        return dp[throws, sum];
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int faces = 6, throws = 3, sum = 12;
        Console.WriteLine(NoofWays(faces, throws, sum));
    }
}


Javascript




// JavaScript code for the approach
function NoofWays(face, throws, sum) {
    const mod = 1000000007;
    const dp = new Array(55).fill().map(() => new Array(55).fill(0));
     
    // Initialize base conditions
    for (let i = 1; i <= face && i <= sum; i++) {
        dp[1][i] = 1;
    }
 
    // iterate over subproblems to get the current solution
    for (let t = 2; t <= throws; t++) {
        for (let s = 1; s <= sum; s++) {
            for (let i = 1; i <= face && i < s; i++) {
             
                // get current value from previous computations
                dp[t][s] += dp[t - 1][s - i];
                dp[t][s] %= mod;
            }
        }
    }
 
    // return answer
    return dp[throws][sum];
}
 
// Driver code
const faces = 6;
const throws = 3;
const sum = 12;
 
// function call
console.log(NoofWays(faces, throws, sum));
 
// This code is contributed by user_dtewbxkn77n


Output

25

Time complexity : O(throws*faces*sum) 
Auxiliary Space : O(throws*sum)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments