Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMaximum sum subarray having sum less than given sum using Set

Maximum sum subarray having sum less than given sum using Set

Given an array arr[] of length N and an integer K, the task is the find the maximum sum subarray with a sum less than K.
Note: If K is less than the minimum element, then return INT_MIN.

Examples: 

Input: arr[] = {-1, 2, 2}, K = 4 
Output:
Explanation: 
The subarray with maximum sum which is less than 4 is {-1, 2, 2}. 
The subarray {2, 2} has maximum sum = 4, but it is not less than 4. 

Input: arr[] = {5, -2, 6, 3, -5}, K =15 
Output: 12 
Explanation: 
The subarray with maximum sum which is less than 15 is {5, -2, 6, 3}. 

Efficient Approach: Sum of subarray [i, j] is given by cumulative sum till j – cumulative sum till i of the array. Now the problem reduces to finding two indexes i and j, such that i < j and cum[j] – cum[i] are as close to K but lesser than it.
To solve this, iterate the array from left to right. Put the cumulative sum of i values that you have encountered till now into a set. When you are processing cum[j] what you need to retrieve from the set is the smallest number in the set which is bigger than or equal to cum[j] – K. This can be done in O(logN) using upper_bound on the set. 

Below is the implementation of the above approach: 

C++




// C++ program to find maximum sum
// subarray less than K
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to maximum required sum < K
int maxSubarraySum(int arr[], int N, int K)
{
 
    // Hash to lookup for value (cum_sum - K)
    set<int> cum_set;
    cum_set.insert(0);
 
    int max_sum = INT_MIN, cSum = 0;
 
    for (int i = 0; i < N; i++) {
 
        // getting cumulative sum from [0 to i]
        cSum += arr[i];
 
        // lookup for upperbound
        // of (cSum-K) in hash
        set<int>::iterator sit
            = cum_set.upper_bound(cSum - K);
 
        // check if upper_bound
        // of (cSum-K) exists
        // then update max sum
        if (sit != cum_set.end())
 
            max_sum = max(max_sum, cSum - *sit);
 
        // insert cumulative value in hash
        cum_set.insert(cSum);
    }
 
    // return maximum sum
    // lesser than K
    return max_sum;
}
 
// Driver code
int main()
{
 
    // initialise the array
    int arr[] = { 5, -2, 6, 3, -5 };
 
    // initialise the value of K
    int K = 15;
 
    // size of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << maxSubarraySum(arr, N, K);
 
    return 0;
}


Java




// Java program to find maximum sum
// subarray less than K
import java.util.*;
import java.io.*;
 
class GFG{
     
// Function to maximum required sum < K
static int maxSubarraySum(int arr[], int N,
                          int K)
{
     
    // Hash to lookup for value (cum_sum - K)
    Set<Integer> cum_set = new HashSet<>();
    cum_set.add(0);
  
    int max_sum =Integer.MIN_VALUE, cSum = 0;
  
    for(int i = 0; i < N; i++)
    {
         
        // Getting cumulative sum from [0 to i]
        cSum += arr[i];
  
        // Lookup for upperbound
        // of (cSum-K) in hash
        ArrayList<Integer> al = new ArrayList<>();
        Iterator<Integer> it = cum_set.iterator();
        int end = 0;
         
        while (it.hasNext())
        {
            end = it.next();
            al.add(end);
        }
         
        Collections.sort(al);
        int sit = lower_bound(al, cSum - K);
         
        // Check if upper_bound
        // of (cSum-K) exists
        // then update max sum
        if (sit != end)
            max_sum = Math.max(max_sum,
                               cSum - sit);
  
        // Insert cumulative value in hash
        cum_set.add(cSum);
    }
  
    // Return maximum sum
    // lesser than K
    return max_sum;
}
 
static int lower_bound(ArrayList<Integer> al,
                       int x)
{
     
    // x is the target value or key
    int l = -1, r = al.size();
    while (l + 1 < r)
    {
        int m = (l + r) >>> 1;
        if (al.get(m) >= x)
            r = m;
        else
            l = m;
    }
    return r;
}
 
// Driver code
public static void main(String args[])
{
  
    // Initialise the array
    int arr[] = { 5, -2, 6, 3, -5 };
  
    // Initialise the value of K
    int K = 15;
  
    // Size of array
    int N = arr.length;
  
    System.out.println(maxSubarraySum(arr, N, K));
}
}
 
// This code is contributed by jyoti369


Python3




import bisect
 
# Function to maximum required sum < K
def maxSubarraySum(arr, N, K):
    # Hash to lookup for value (cum_sum - K)
    cum_set = set()
    cum_set.add(0)
    max_sum = float('-inf')
    cSum = 0
    for i in range(N):
        # getting cumulative sum from [0 to i]
        cSum += arr[i]
 
        # lookup for upperbound of (cSum-K) in hash
        al = [x for x in cum_set]
        al.sort()
        lower_bound_index = bisect.bisect_left(al, cSum - K)
 
        # check if upper_bound of (cSum-K) exists then update max sum
        if lower_bound_index != len(al):
            max_sum = max(max_sum, cSum - al[lower_bound_index])
 
        # // insert cumulative value in hash
        cum_set.add(cSum)
 
    #  return maximum sum lesser than K
    return max_sum
 
 
arr = [5, -2, 6, 3, -5]
K = 15
N = len(arr)
print(maxSubarraySum(arr, N, K))


C#




// Java program to find maximum sum
// subarray less than K
using System;
using System.Collections.Generic;
class GFG {
 
    // Function to maximum required sum < K
    static int maxSubarraySum(int[] arr, int N, int K)
    {
 
        // Hash to lookup for value (cum_sum - K)
        HashSet<int> cum_set = new HashSet<int>();
        cum_set.Add(0);
        int max_sum = Int32.MinValue, cSum = 0;
        for (int i = 0; i < N; i++) {
 
            // Getting cumulative sum from [0 to i]
            cSum += arr[i];
 
            // Lookup for upperbound
            // of (cSum-K) in hash
            List<int> al = new List<int>();
            int end = 0;
            foreach(int it in cum_set)
            {
                end = it;
                al.Add(it);
            }
 
            al.Sort();
            int sit = lower_bound(al, cSum - K);
 
            // Check if upper_bound
            // of (cSum-K) exists
            // then update max sum
            if (sit != end)
                max_sum = Math.Max(max_sum, cSum - al.ElementAt(sit));
 
            // Insert cumulative value in hash
            cum_set.Add(cSum);
        }
 
        // Return maximum sum
        // lesser than K
        return max_sum;
    }
    static int lower_bound(List<int> al, int x)
    {
 
        // x is the target value or key
        int l = -1, r = al.Count;
        while (l + 1 < r) {
            int m = (l + r) >> 1;
            if (al[m] >= x)
                r = m;
            else
                l = m;
        }
        return r;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
 
        // Initialise the array
        int[] arr = { 5, -2, 6, 3, -5 };
 
        // Initialise the value of K
        int K = 15;
 
        // Size of array
        int N = arr.Length;
        Console.Write(maxSubarraySum(arr, N, K));
    }
}
 
// This code is contributed by chitranayal.


Javascript




<script>
 
// JavaScript program to find maximum sum
// subarray less than K
 
 
    // Function to maximum required sum < K
    function maxSubarraySum(arr, N, K)
    {
 
        // Hash to lookup for value (cum_sum - K)
        let cum_set = new Set();
 
        cum_set.add(0);
 
        let max_sum = Number.MIN_SAFE_INTEGER;
        let cSum = 0;
 
        for(let i = 0; i < N; i++){
 
            // Getting cumulative sum from [0 to i]
            cSum += arr[i];
 
            // Lookup for upperbound
            // of (cSum-K) in hash
            let al = [];
            let end = 0;
            for(let it of cum_set)
            {
                end = it;
                al.push(it);
            }
 
            al.sort((a, b) => a - b);
            let sit = lower_bound(al, cSum - K);
 
            // Check if upper_bound
            // of (cSum-K) exists
            // then update max sum
            if (sit != end)
                max_sum = Math.max(max_sum, cSum - sit);
 
            // Insert cumulative value in hash
            cum_set.add(cSum);
        }
 
        // Return maximum sum
        // lesser than K
        return max_sum;
    }
     
    let lower_bound =
    (al, x) => al.filter((item) => item > x )[0]    
 
    // Driver code
 
 
        // Initialise the array
        let arr = [ 5, -2, 6, 3, -5 ];
 
        // Initialise the value of K
        let K = 15;
 
        // Size of array
        let N = arr.length;
        document.write(maxSubarraySum(arr, N, K));
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output

12

Time Complexity: O(N*Log(N)), where N represents the size of the given array.
Auxiliary Space: O(N), where N represents the size of the given array.

Similar article: Maximum sum subarray having sum less than or equal to given sum using Sliding Window

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments