Friday, January 10, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum cost of reducing Array by merging any adjacent elements repetitively

Minimum cost of reducing Array by merging any adjacent elements repetitively

Given an array arr[] of N numbers. We can merge two adjacent numbers into one and the cost of merging the two numbers is equal to the sum of the two values. The task is to find the total minimum cost of merging all the numbers.
Examples: 
 

Input: arr[] = { 6, 4, 4, 6 } 
Output: 40 
Explanation: 
Following is the optimal way of merging numbers to get the total minimum cost of merging of numbers: 
1. Merge (6, 4), then array becomes, arr[] = {10, 4, 6} and cost = 10 
2. Merge (4, 6), then array becomes, arr[] = {10, 10} and cost = 10 
3. Merge (10, 10), then array becomes, arr[] = {20} and cost = 20 
Hence the total cost is 10 + 10 + 20 = 40.
Input: arr[] = { 3, 2, 4, 1 } 
Output: 20 
Explanation: 
Following is the optimal way of merging numbers to get the total minimum cost of merging of numbers: 
1. Merge (3, 2), then array becomes, arr[] = {5, 4, 1} and cost = 5 
2. Merge (4, 1), then array becomes, arr[] = {5, 5} and cost = 5 
3. Merge (5, 5), then array becomes, arr[] = {10} and cost = 10 
Hence the total cost is 5 + 5 + 10 = 20.

Approach: The problem can be solved using Dynamic Programming. Below are the steps: 
 

  1. The idea is to merge 2 consecutive numbers into every possible index i and then solve recursively for left and right parts of index i.
  2. Add the result of merging two numbers in above steps and store the minimum of them.
  3. Since there are many subproblems that are repeating, hence we use memoization to store the values in a NxN matrix.
  4. The recurrence relation for the above problem statement is given as: 
     

dp[i][j] = min(dp[i][j], (sum[i][j] + dp[i][k] + dp[k + 1][j])), for every (i ? k lt; j) 

      5. Now dp[1][N] will give the minimum total cost of merging all the numbers.

Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the total minimum
// cost of merging two consecutive numbers
int mergeTwoNumbers(vector<int>& numbers)
{
    int len, i, j, k;
 
    // Find the size of numbers[]
    int n = numbers.size();
 
    // If array is empty, return 0
    if (numbers.size() == 0) {
        return 0;
    }
 
    // To store the prefix Sum of
    // numbers array numbers[]
    vector<int> prefixSum(n + 1, 0);
 
    // Traverse numbers[] to find the
    // prefix sum
    for (int i = 1; i <= n; i++) {
        prefixSum[i] = prefixSum[i - 1]
                       + numbers[i - 1];
    }
 
    // dp table to memoised the value
    vector<vector<int> > dp(
        n + 1,
        vector<int>(n + 1));
 
    // For single numbers cost is zero
    for (int i = 1; i <= n; i++) {
        dp[i][i] = 0;
    }
 
    // Iterate for length >= 1
    for (len = 2; len <= n; len++) {
 
        for (i = 1; i <= n - len + 1; i++) {
            j = i + len - 1;
 
            // Find sum in range [i..j]
            int sum = prefixSum[j]
                      - prefixSum[i - 1];
 
            // Initialise dp[i][j] to INT_MAX
            dp[i][j] = INT_MAX;
 
            // Iterate for all possible
            // K to find the minimum cost
            for (k = i; k < j; k++) {
 
                // Update the minimum sum
                dp[i][j]
                    = min(dp[i][j],
                          dp[i][k]
                              + dp[k + 1][j]
                              + sum);
            }
        }
    }
 
    // Return the final minimum cost
    return dp[1][n];
}
 
// Driver Code
int main()
{
    // Given set of numbers
    vector<int> arr1 = { 6, 4, 4, 6 };
 
    // Function Call
    cout << mergeTwoNumbers(arr1)
         << endl;
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to find the total minimum
// cost of merging two consecutive numbers
static int mergeTwoNumbers(int []numbers)
{
    int len, i, j, k;
 
    // Find the size of numbers[]
    int n = numbers.length;
 
    // If array is empty, return 0
    if (numbers.length == 0)
    {
        return 0;
    }
 
    // To store the prefix Sum of
    // numbers array numbers[]
    int []prefixSum = new int[n + 1];
 
    // Traverse numbers[] to find the
    // prefix sum
    for (i = 1; i <= n; i++)
    {
        prefixSum[i] = prefixSum[i - 1] +
                         numbers[i - 1];
    }
 
    // dp table to memoised the value
    int [][]dp = new int[n + 1][n + 1];
 
    // Iterate for length >= 1
    for (len = 2; len <= n; len++)
    {
 
        for (i = 1; i <= n - len + 1; i++)
        {
            j = i + len - 1;
 
            // Find sum in range [i..j]
            int sum = prefixSum[j] -
                      prefixSum[i - 1];
 
            // Initialise dp[i][j] to Integer.MAX_VALUE
            dp[i][j] = Integer.MAX_VALUE;
 
            // Iterate for all possible
            // K to find the minimum cost
            for (k = i; k < j; k++)
            {
 
                // Update the minimum sum
                dp[i][j] = Math.min(dp[i][j],
                                    dp[i][k] +
                                    dp[k + 1][j] +
                                    sum);
            }
        }
    }
 
    // Return the final minimum cost
    return dp[1][n];
}
 
// Driver Code
public static void main(String[] args)
{
    // Given set of numbers
    int []arr1 = { 6, 4, 4, 6 };
 
    // Function Call
    System.out.print(mergeTwoNumbers(arr1) + "\n");
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
import sys
 
# Function to find the total minimum
# cost of merging two consecutive numbers
def mergeTwoNumbers(numbers):
 
    # Find the size of numbers[]
    n = len(numbers)
 
    # If array is empty, return 0
    if (len(numbers) == 0):
        return 0
     
    # To store the prefix Sum of
    # numbers array numbers[]
    prefixSum = [0] * (n + 1)
 
    # Traverse numbers[] to find the
    # prefix sum
    for i in range(1, n + 1):
        prefixSum[i] = (prefixSum[i - 1] +
                          numbers[i - 1])
     
    # dp table to memoised the value
    dp = [[0 for i in range(n + 1)]
             for j in range(n + 1)]
 
    # For single numbers cost is zero
    for i in range(1, n + 1):
        dp[i][i] = 0
     
    # Iterate for length >= 1
    for p in range(2, n + 1):
        for i in range(1, n - p + 2):
            j = i + p - 1
 
            # Find sum in range [i..j]
            sum = prefixSum[j] - prefixSum[i - 1]
 
            # Initialise dp[i][j] to _MAX
            dp[i][j] = sys.maxsize
 
            # Iterate for all possible
            # K to find the minimum cost
            for k in range(i, j):
 
                # Update the minimum sum
                dp[i][j] = min(dp[i][j],
                              (dp[i][k] +
                               dp[k + 1][j] + sum))
             
    # Return the final minimum cost
    return dp[1][n]
 
# Driver Code
 
# Given set of numbers
arr1 = [ 6, 4, 4, 6 ]
 
# Function call
print(mergeTwoNumbers(arr1))
 
# This code is contributed by sanjoy_62


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to find the total minimum
// cost of merging two consecutive numbers
static int mergeTwoNumbers(int []numbers)
{
    int len, i, j, k;
 
    // Find the size of numbers[]
    int n = numbers.Length;
 
    // If array is empty, return 0
    if (numbers.Length == 0)
    {
        return 0;
    }
 
    // To store the prefix Sum of
    // numbers array numbers[]
    int []prefixSum = new int[n + 1];
 
    // Traverse numbers[] to find the
    // prefix sum
    for (i = 1; i <= n; i++)
    {
        prefixSum[i] = prefixSum[i - 1] +
                         numbers[i - 1];
    }
 
    // dp table to memoised the value
    int [,]dp = new int[n + 1, n + 1];
 
    // Iterate for length >= 1
    for (len = 2; len <= n; len++)
    {
 
        for (i = 1; i <= n - len + 1; i++)
        {
            j = i + len - 1;
 
            // Find sum in range [i..j]
            int sum = prefixSum[j] -
                      prefixSum[i - 1];
 
            // Initialise dp[i,j] to int.MaxValue
            dp[i,j] = int.MaxValue;
 
            // Iterate for all possible
            // K to find the minimum cost
            for (k = i; k < j; k++)
            {
 
                // Update the minimum sum
                dp[i, j] = Math.Min(dp[i, j],
                                    dp[i, k] +
                                    dp[k + 1, j] +
                                    sum);
            }
        }
    }
 
    // Return the readonly minimum cost
    return dp[1, n];
}
 
// Driver Code
public static void Main(String[] args)
{
    // Given set of numbers
    int []arr1 = { 6, 4, 4, 6 };
 
    // Function Call
    Console.Write(mergeTwoNumbers(arr1) + "\n");
}
}
 
// This code is contributed by sapnasingh4991


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to find the total minimum
// cost of merging two consecutive numbers
function mergeTwoNumbers(numbers)
{
    var len, i, j, k;
 
    // Find the size of numbers[]
    var n = numbers.length;
 
    // If array is empty, return 0
    if (numbers.length == 0) {
        return 0;
    }
 
    // To store the prefix Sum of
    // numbers array numbers[]
    var prefixSum = Array(n+1).fill(0);
 
    // Traverse numbers[] to find the
    // prefix sum
    for (var i = 1; i <= n; i++) {
        prefixSum[i] = prefixSum[i - 1]
                       + numbers[i - 1];
    }
 
    // dp table to memoised the value
    var dp = Array.from(Array(n+1), ()=>Array(n+1));
 
    // For single numbers cost is zero
    for (var i = 1; i <= n; i++) {
        dp[i][i] = 0;
    }
 
    // Iterate for length >= 1
    for (len = 2; len <= n; len++) {
 
        for (i = 1; i <= n - len + 1; i++) {
            j = i + len - 1;
 
            // Find sum in range [i..j]
            var sum = prefixSum[j]
                      - prefixSum[i - 1];
 
            // Initialise dp[i][j] to INT_MAX
            dp[i][j] = 1000000000;
 
            // Iterate for all possible
            // K to find the minimum cost
            for (k = i; k < j; k++) {
 
                // Update the minimum sum
                dp[i][j]
                    = Math.min(dp[i][j],
                          dp[i][k]
                              + dp[k + 1][j]
                              + sum);
            }
        }
    }
 
    // Return the final minimum cost
    return dp[1][n];
}
 
// Driver Code
 
// Given set of numbers
var arr1 = [6, 4, 4, 6];
 
// Function Call
document.write( mergeTwoNumbers(arr1))
 
 
</script>


 
 

Output: 

40

 

 

Time Complexity: O(N3) 
Auxiliary Space Complexity: O(N2)
 

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments