Sunday, January 12, 2025
Google search engine
HomeLanguagesDynamic ProgrammingNewman-Conway Sequence

Newman-Conway Sequence

Newman-Conway Sequence is the one that generates the following integer sequence. 
1 1 2 2 3 4 4 4 5 6 7 7…

In mathematical terms, the sequence P(n) of Newman-Conway numbers is defined by the recurrence relation 

P(n) = P(P(n - 1)) + P(n - P(n - 1)) 

with seed values P(1) = 1 and P(2) = 1

Given a number n, print n-th number in Newman-Conway Sequence.

Examples:

Input : n = 2
Output : 1

Input : n = 10
Output : 6

Method 1 (Use Recursion) : 

A simple approach is direct recursive implementation of above recurrence relation.  

C++




// C++ program for n-th
// element of Newman-Conway Sequence
#include <bits/stdc++.h>
using namespace std;
 
// Recursive Function to find the n-th element
int sequence(int n)
{
    if (n == 1 || n == 2)
        return 1;
    else
        return sequence(sequence(n - 1))
                + sequence(n - sequence(n - 1));
}
 
// Driver Program
int main()
{
    int n = 10;
    cout << sequence(n);
    return 0;
}


Java




// Java program to find nth
// element of Newman-Conway Sequence
import java.io.*;
 
class GFG {
     
    // Recursion to find
    // n-th element
    static int sequence(int n)
    {
        if (n == 1 || n == 2)
            return 1;
        else
            return sequence(sequence(n - 1))
                  + sequence(n - sequence(n - 1));
    }
      
    // Driver Program
    public static void main(String args[])
    {
        int n = 10;
        System.out.println(sequence(n));
    }
}
 
/*This code is contributed by Nikita Tiwari.*/


Python




# Recursive function to find the n-th
# element of sequence
def sequence(n):
    if n == 1 or n == 2:
        return 1
    else:
        return sequence(sequence(n-1)) + sequence(n-sequence(n-1));
         
# Driver code
def main():
    n = 10
    print sequence(n)
     
if __name__ == '__main__':
    main()


C#




// C# program to find nth element
// of Newman-Conway Sequence
using System;
 
class GFG {
     
    // Recursion to find
    // n-th element
    static int sequence(int n)
    {
        if (n == 1 || n == 2)
            return 1;
        else
            return sequence(sequence(n - 1)) + sequence
                           (n - sequence(n - 1));
    }
     
    // Driver code
    public static void Main()
    {
        int n = 10;
        Console.Write(sequence(n));
    }
}
 
// This code is contributed by Nitin Mittal.


PHP




<?php
// PHP program for n-th element
// of Newman-Conway Sequence
 
// Recursive Function to
// find the n-th element
function sequence($n)
{
    if ($n == 1 || $n == 2)
        return 1;
    else
        return sequence(sequence($n - 1))+
               sequence($n - sequence($n - 1));
}
 
// Driver Code
$n = 10;
echo(sequence($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
 
// JavaScript program to find nth
// element of Newman-Conway Sequence
 
// Recursion to find
// n-th element
function sequence(n)
{
    if (n == 1 || n == 2)
        return 1;
    else
        return sequence(sequence(n - 1)) +
           sequence(n - sequence(n - 1));
}
 
// Driver code
let n = 10;
document.write(sequence(n));
 
// This code is contributed by souravghosh0416  
 
</script>


Output : 

6

Time complexity: O(n)

Auxiliary Space: O(n)

Method 2 (Use Dynamic Programming): 

We can avoid repeated work done in method 1 by storing the values in the sequence in an array. 

C++




// C++ program to find the n-th element of
// Newman-Conway Sequence
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the n-th element
int sequence(int n)
{
    // Declare array to store sequence
    int f[n + 1];
    int i;
    f[0] = 0;
    f[1] = 1;
    f[2] = 1;
 
    for (i = 3; i <= n; i++)
        f[i] = f[f[i - 1]] + f[i - f[i - 1]];   
 
    return f[n];
}
 
// Driver Program
int main()
{
    int n = 10;
    cout << sequence(n);
    return 0;
}


Java




// JAVA Code for Newman-Conway Sequence
import java.util.*;
 
class GFG {
     
    // Function to find the n-th element
    static int sequence(int n)
    {
        // Declare array to store sequence
        int f[] = new int[n + 1];
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
 
        int i;
      
        for (i = 3; i <= n; i++)
            f[i] = f[f[i - 1]] +
                        f[i - f[i - 1]];   
      
        return f[n];
    }
     
    /* Driver program to test above function */
    public static void main(String[] args)
    {
         int n = 10;
         System.out.println(sequence(n));
 
    }
}
 
// This code is contributed by Arnav Kr. Mandal.


Python




''' Python program to find the n-th element of
    Newman-Conway Sequence'''
 
# To declare array import module array
import array
def sequence(n):
    f = array.array('i', [0, 1, 1])
 
    # To store values of sequence in array
    for i in range(3, n + 1):
        r = f[f[i-1]]+f[i-f[i-1]]
        f.append(r);
 
    return r
 
# Driver code
def main():
    n = 10
    print sequence(n)
     
if __name__ == '__main__':
    main()


C#




// C# Code for Newman-Conway Sequence
using System;
 
class GFG {
     
    // Function to find the n-th element
    static int sequence(int n)
    {
        // Declare array to store sequence
        int []f = new int[n + 1];
        f[0] = 0;
        f[1] = 1;
        f[2] = 1;
 
        int i;
     
        for (i = 3; i <= n; i++)
            f[i] = f[f[i - 1]] +
                   f[i - f[i - 1]];
     
        return f[n];
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 10;
        Console.Write(sequence(n));
 
    }
}
 
// This code is contributed by Nitin Mittal.


PHP




<?php
// PHP program to find the n-th element 
// of Newman-Conway Sequence
 
// Function to find
// the n-th element
function sequence($n)
{
     
    // Declare array to
    // store sequence
    $i;
    $f[0] = 0;
    $f[1] = 1;
    $f[2] = 1;
 
    for ($i = 3; $i <= $n; $i++)
        $f[$i] = $f[$f[$i - 1]] +
                 $f[$i - $f[$i - 1]];
 
    return $f[$n];
}
 
// Driver Code
$n = 10;
echo(sequence($n));
 
// This code is contributed by Ajit.
?>


Javascript




<script>
// Javascript program to find the n-th element
// of Newman-Conway Sequence
 
// Function to find
// the n-th element
function sequence(n)
{
     
    // Declare array to
    // store sequence
    let i;
    let f = [];
    f[0] = 0;
    f[1] = 1;
    f[2] = 1;
 
    for (let i = 3; i <= n; i++)
        f[i] = f[f[i - 1]] +
                f[i - f[i - 1]];
 
    return f[n];
}
 
// Driver Code
let n = 10;
document.write(sequence(n));
 
// This code is contributed by gfgking.
</script>


Output : 

6

Time complexity: O(n) 

Auxiliary Space: O(n) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments