Sunday, September 22, 2024
Google search engine
HomeLanguagesDynamic ProgrammingConvert undirected connected graph to strongly connected directed graph

Convert undirected connected graph to strongly connected directed graph

Given an undirected graph of N vertices and M edges, the task is to assign directions to the given M Edges such that the graph becomes Strongly Connected Components. If a graph cannot be converted into Strongly Connected Components then print “-1”.

Examples: 

Input: N = 5, Edges[][] = { { 0, 1 }, { 0, 2 }, { 1, 2 }, { 1, 4 }, { 2, 3 }, { 3, 4 } } 
Output: 
0->1 
2->0 
4->1 
3->4 
2->3 
1->2 
Explanation: 
Below is the assigned edges to the above undirected graph: 
 

Input: N = 5, Edges[][] = { { 0, 1 }, { 0, 2 }, { 1, 3 }, { 2, 3 }, { 3, 4 } } 
Output: -1 
Explanation: 
Below is the graph for the above information: 
 

Since there is a bridge present in the above-undirected graph. Therefore, this graph can’t be converted into SCCs. 

Approach: We know that in any directed graph is said to be in Strongly Connected Components(SCCs) if all the vertices of the graph are a part of some cycle. The given undirected graph doesn’t form SCCs if and only if the graph contains any bridges in it. Below are the steps: 

  • We will use an array mark[] to store the visited node during DFS Traversal, order[] to store the index number of the visited node, and bridge_detect[] to store any bridge present in the given graph.
  • Start the DFS Traversal from vertex 1.
  • Traverse the Adjacency list of current Node and do the following: 
    • If any edges are traverse again while any DFS call then ignore that edges.
    • If the order of child Node(Node u) is greater than the order of parent node(node v), then ignore this current edges as Edges(v, u) is already processed.
    • If any Back Edge is found then update the Bridge Edges of the current parent node(node v) as:
 bridge_detect[v] = min(order[u], bridge_detect[v]);
  • Else do the DFS Traversal for the current child node and repeat step 3 for the current node.
  • Update the bridges detect after DFS call for the current node as:
bridge_detect[v] = min(bridge_detect[u], bridge_detect[v])
  • Store the current pair of Edges(v, u) as directed Edges from Node v to Node u in an array of pairs(say arr[][]).
  • If there is any bridge present in the given graph then print “-1”.
  • Else print the directed Edges stored in arr[][].

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// To store the assigned Edges
vector<pair<int, int> > ans;
 
// Flag variable to check Bridges
int flag = 1;
 
// Function to implement DFS Traversal
int dfs(vector<int> adj[],
        int* order, int* bridge_detect,
        bool* mark, int v, int l)
{
 
    // Mark the current node as visited
    mark[v] = 1;
 
    // Update the order of node v
    order[v] = order[l] + 1;
 
    // Update the bridge_detect for node v
    bridge_detect[v] = order[v];
 
    // Traverse the adjacency list of
    // Node v
    for (int i = 0; i < adj[v].size(); i++) {
        int u = adj[v][i];
 
        // Ignores if same edge is traversed
        if (u == l) {
            continue;
        }
 
        // Ignores the edge u --> v as
        // v --> u is already processed
        if (order[v] < order[u]) {
            continue;
        }
 
        // Finds a back Edges, cycle present
        if (mark[u]) {
 
            // Update the bridge_detect[v]
            bridge_detect[v]
                = min(order[u],
                      bridge_detect[v]);
        }
 
        // Else DFS traversal for current
        // node in the adjacency list
        else {
 
            dfs(adj, order, bridge_detect,
                mark, u, v);
        }
 
        // Update the bridge_detect[v]
        bridge_detect[v]
            = min(bridge_detect[u],
                  bridge_detect[v]);
 
        // Store the current directed Edge
        ans.push_back(make_pair(v, u));
    }
 
    // Condition for Bridges
    if (bridge_detect[v] == order[v]
        && l != 0) {
        flag = 0;
    }
 
    // Return flag
    return flag;
}
 
// Function to print the direction
// of edges to make graph SCCs
void convert(vector<int> adj[], int n)
{
 
    // Arrays to store the visited,
    // bridge_detect and order of
    // Nodes
    int order[n] = { 0 };
    int bridge_detect[n] = { 0 };
    bool mark[n];
 
    // Initialise marks[] as false
    memset(mark, false, sizeof(mark));
 
    // DFS Traversal from vertex 1
    int flag = dfs(adj, order,
                   bridge_detect,
                   mark, 1, 0);
 
    // If flag is zero, then Bridge
    // is present in the graph
    if (flag == 0) {
        cout << "-1";
    }
 
    // Else print the direction of
    // Edges assigned
    else {
        for (auto& it : ans) {
            cout << it.first << "->"
                 << it.second << '\n';
        }
    }
}
 
// Function to create graph
void createGraph(int Edges[][2],
                 vector<int> adj[],
                 int M)
{
 
    // Traverse the Edges
    for (int i = 0; i < M; i++) {
 
        int u = Edges[i][0];
        int v = Edges[i][1];
 
        // Push the edges in an
        // adjacency list
        adj[u].push_back(v);
        adj[v].push_back(u);
    }
}
 
// Driver Code
int main()
{
    // N vertices and M Edges
    int N = 5, M = 6;
    int Edges[M][2]
        = { { 0, 1 }, { 0, 2 },
            { 1, 2 }, { 1, 4 },
            { 2, 3 }, { 3, 4 } };
 
    // To create Adjacency List
    vector<int> adj[N];
 
    // Create an undirected graph
    createGraph(Edges, adj, M);
 
    // Function Call
    convert(adj, N);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
import java.lang.*;
 
class GFG{
     
// To store the assigned Edges
static ArrayList<int[]> ans;
  
// Flag variable to check Bridges
static int flag = 1;
  
// Function to implement DFS Traversal
static int dfs(ArrayList<ArrayList<Integer>> adj,
               int[] order, int[] bridge_detect,
               boolean[] mark, int v, int l)
{
     
    // Mark the current node as visited
    mark[v] = true;
     
    // Update the order of node v
    order[v] = order[l] + 1;
  
    // Update the bridge_detect for node v
    bridge_detect[v] = order[v];
  
    // Traverse the adjacency list of
    // Node v
    for(int i = 0; i < adj.get(v).size(); i++)
    {
        int u = adj.get(v).get(i);
  
        // Ignores if same edge is traversed
        if (u == l)
        {
            continue;
        }
  
        // Ignores the edge u --> v as
        // v --> u is already processed
        if (order[v] < order[u])
        {
            continue;
        }
  
        // Finds a back Edges, cycle present
        if (mark[u])
        {
             
            // Update the bridge_detect[v]
            bridge_detect[v] = Math.min(order[u],
                                bridge_detect[v]);
        }
  
        // Else DFS traversal for current
        // node in the adjacency list
        else
        {
            dfs(adj, order, bridge_detect,
                mark, u, v);
        }
  
        // Update the bridge_detect[v]
        bridge_detect[v] = Math.min(bridge_detect[u],
                                    bridge_detect[v]);
  
        // Store the current directed Edge
        ans.add(new int[]{v, u});
    }
  
    // Condition for Bridges
    if (bridge_detect[v] == order[v] && l != 0)
    {
        flag = 0;
    }
     
    // Return flag
    return flag;
}
  
// Function to print the direction
// of edges to make graph SCCs
static void convert(ArrayList<ArrayList<Integer>> adj,
                    int n)
{
     
    // Arrays to store the visited,
    // bridge_detect and order of
    // Nodes
    int[] order = new int[n];
    int[] bridge_detect = new int[n];
    boolean mark[] = new boolean[n];
     
    // DFS Traversal from vertex 1
    int flag = dfs(adj, order,
                   bridge_detect,
                   mark, 1, 0);
  
    // If flag is zero, then Bridge
    // is present in the graph
    if (flag == 0)
    {
        System.out.print("-1");
    }
  
    // Else print the direction of
    // Edges assigned
    else
    {
        for(int[] it : ans)
        {
            System.out.println(it[0] + "->" +
                               it[1]);
        }
    }
}
  
// Function to create graph
static void createGraph(int Edges[][],
                        ArrayList<ArrayList<Integer>> adj,
                        int M)
{
     
    // Traverse the Edges
    for(int i = 0; i < M; i++)
    {
        int u = Edges[i][0];
        int v = Edges[i][1];
         
        // Push the edges in an
        // adjacency list
        adj.get(u).add(v);
        adj.get(v).add(u);
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // N vertices and M Edges
    int N = 5, M = 6;
     
    int Edges[][] = { { 0, 1 }, { 0, 2 },
                      { 1, 2 }, { 1, 4 },
                      { 2, 3 }, { 3, 4 } };
     
    // To create Adjacency List
    ArrayList<ArrayList<Integer>> adj = new ArrayList<>();
    ans = new ArrayList<>();
     
    for(int i = 0; i < N; i++)
        adj.add(new ArrayList<>());
     
    // Create an undirected graph
    createGraph(Edges, adj, M);
     
    // Function Call
    convert(adj, N);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 program for
# the above approach
 
# To store the assigned
# Edges
ans = []
  
# Flag variable to
# check Bridges
flag = 1;
  
# Function to implement
# DFS Traversal
def dfs(adj, order,
        bridge_detect,
        mark, v, l):
     
    global flag
     
    # Mark the current
    # node as visited
    mark[v] = 1;
  
    # Update the order of
    # node v
    order[v] = order[l] + 1;
  
    # Update the bridge_detect
    # for node v
    bridge_detect[v] = order[v];
  
    # Traverse the adjacency list of
    # Node v
    for i in range(len(adj[v])):       
        u = adj[v][i];
  
        # Ignores if same edge
        # is traversed
        if (u == l):
            continue;      
  
        # Ignores the edge u --> v as
        # v --> u is already processed
        if (order[v] < order[u]):
            continue;       
  
        # Finds a back Edges,
        # cycle present
        if (mark[u]):
  
            # Update the bridge_detect[v]
            bridge_detect[v] = min(order[u],
                                  bridge_detect[v]);
         
        # Else DFS traversal for current
        # node in the adjacency list
        else:
  
            dfs(adj, order,
                bridge_detect,
                mark, u, v);       
  
        # Update the bridge_detect[v]
        bridge_detect[v] = min(bridge_detect[u],
                              bridge_detect[v]);
  
        # Store the current
        # directed Edge
        ans.append([v, u]);
  
    # Condition for Bridges
    if (bridge_detect[v] ==
        order[v] and l != 0):
        flag = 0;
     
    # Return flag
    return flag;
  
# Function to print the
# direction of edges to
# make graph SCCs
def convert(adj, n):
  
    # Arrays to store the visited,
    # bridge_detect and order of
    # Nodes
    order = [0 for i in range(n)]
    bridge_detect = [0 for i in range(n)]
    mark = [False for i in range(n)]
  
    # DFS Traversal from
    # vertex 1
    flag = dfs(adj, order,
               bridge_detect,
               mark, 1, 0);
  
    # If flag is zero, then Bridge
    # is present in the graph
    if (flag == 0):
        print(-1)
  
    # Else print the direction
    # of Edges assigned
    else:
        for it in ans:
            print("{} -> {}".format(it[0],
                                    it[1]))
 
# Function to create graph
def createGraph(Edges,adj, M):
  
    # Traverse the Edges
    for i in range(M):
  
        u = Edges[i][0];
        v = Edges[i][1];
  
        # Push the edges in an
        # adjacency list
        adj[u].append(v);
        adj[v].append(u);
 
# Driver code
if __name__ == "__main__":
     
    # N vertices and M Edges
    N = 5
    M = 6;
    Edges = [[0, 1], [0, 2],
            [1, 2], [1, 4],
            [2, 3], [3, 4]];
  
    # To create Adjacency List
    adj = [[] for i in range(N)]
  
    # Create an undirected graph
    createGraph(Edges, adj, M);
  
    # Function Call
    convert(adj, N);
 
# This code is contributed by rutvik_56


C#




// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
  
class GFG{
      
// To store the assigned Edges
static ArrayList ans;
   
// Flag variable to check Bridges
static int flag = 1;
   
// Function to implement DFS Traversal
static int dfs(ArrayList adj,
               int[] order, int[] bridge_detect,
               bool[] mark, int v, int l)
{
     
    // Mark the current node as visited
    mark[v] = true;
     
    // Update the order of node v
    order[v] = order[l] + 1;
     
    // Update the bridge_detect for node v
    bridge_detect[v] = order[v];
   
    // Traverse the adjacency list of
    // Node v
    for(int i = 0;
            i < ((ArrayList)adj[v]).Count;
            i++)
    {
        int u = (int)((ArrayList)adj[v])[i];
         
        // Ignores if same edge is traversed
        if (u == l)
        {
            continue;
        }
         
        // Ignores the edge u --> v as
        // v --> u is already processed
        if (order[v] < order[u])
        {
            continue;
        }
         
        // Finds a back Edges, cycle present
        if (mark[u])
        {
             
            // Update the bridge_detect[v]
            bridge_detect[v] = Math.Min(order[u],
                                bridge_detect[v]);
        }
         
        // Else DFS traversal for current
        // node in the adjacency list
        else
        {
            dfs(adj, order, bridge_detect,
                mark, u, v);
        }
   
        // Update the bridge_detect[v]
        bridge_detect[v] = Math.Min(bridge_detect[u],
                                    bridge_detect[v]);
   
        // Store the current directed Edge
        ans.Add(new int[]{v, u});
    }
   
    // Condition for Bridges
    if (bridge_detect[v] == order[v] && l != 0)
    {
        flag = 0;
    }
     
    // Return flag
    return flag;
}
   
// Function to print the direction
// of edges to make graph SCCs
static void convert(ArrayList adj,
                    int n)
{
     
    // Arrays to store the visited,
    // bridge_detect and order of
    // Nodes
    int[] order = new int[n];
    int[] bridge_detect = new int[n];
    bool []mark = new bool[n];
     
    // DFS Traversal from vertex 1
    int flag = dfs(adj, order,
                   bridge_detect,
                   mark, 1, 0);
                    
    // If flag is zero, then Bridge
    // is present in the graph
    if (flag == 0)
    {
        Console.Write("-1");
    }
     
    // Else print the direction of
    // Edges assigned
    else
    {
        foreach(int[] it in ans)
        {
            Console.WriteLine(it[0] + "->" +
                              it[1]);
        }
    }
}
   
// Function to create graph
static void createGraph(int [,]Edges,
                        ArrayList adj,
                        int M)
{
     
    // Traverse the Edges
    for(int i = 0; i < M; i++)
    {
        int u = Edges[i, 0];
        int v = Edges[i, 1];
         
        // Push the edges in an
        // adjacency list
        ((ArrayList)adj[u]).Add(v);
        ((ArrayList)adj[v]).Add(u);
    }
}
  
// Driver code
public static void Main(string[] args)
{
     
    // N vertices and M Edges
    int N = 5, M = 6;
      
    int [,]Edges = { { 0, 1 }, { 0, 2 },
                     { 1, 2 }, { 1, 4 },
                     { 2, 3 }, { 3, 4 } };
      
    // To create Adjacency List
    ArrayList adj = new ArrayList();
    ans = new ArrayList();
      
    for(int i = 0; i < N; i++)
        adj.Add(new ArrayList());
      
    // Create an undirected graph
    createGraph(Edges, adj, M);
      
    // Function Call
    convert(adj, N);
}
}
 
// This code is contributed by pratham76


Javascript




<script>
    // Javascript program for the above approach
     
    // To store the assigned Edges
    let ans;
 
    // Flag variable to check Bridges
    let flag = 1;
 
    // Function to implement DFS Traversal
    function dfs(adj, order, bridge_detect, mark, v, l)
    {
 
        // Mark the current node as visited
        mark[v] = true;
 
        // Update the order of node v
        order[v] = order[l] + 1;
 
        // Update the bridge_detect for node v
        bridge_detect[v] = order[v];
 
        // Traverse the adjacency list of
        // Node v
        for(let i = 0; i < adj[v].length; i++)
        {
            let u = adj[v][i];
 
            // Ignores if same edge is traversed
            if (u == l)
            {
                continue;
            }
 
            // Ignores the edge u --> v as
            // v --> u is already processed
            if (order[v] < order[u])
            {
                continue;
            }
 
            // Finds a back Edges, cycle present
            if (mark[u])
            {
 
                // Update the bridge_detect[v]
                bridge_detect[v] = Math.min(order[u],
                                    bridge_detect[v]);
            }
 
            // Else DFS traversal for current
            // node in the adjacency list
            else
            {
                dfs(adj, order, bridge_detect, mark, u, v);
            }
 
            // Update the bridge_detect[v]
            bridge_detect[v] = Math.min(bridge_detect[u], bridge_detect[v]);
 
            // Store the current directed Edge
            ans.push([v, u]);
        }
 
        // Condition for Bridges
        if (bridge_detect[v] == order[v] && l != 0)
        {
            flag = 0;
        }
 
        // Return flag
        return flag;
    }
 
    // Function to print the direction
    // of edges to make graph SCCs
    function convert(adj, n)
    {
 
        // Arrays to store the visited,
        // bridge_detect and order of
        // Nodes
        let order = new Array(n);
        let bridge_detect = new Array(n);
        let mark = new Array(n);
 
        // DFS Traversal from vertex 1
        let flag = dfs(adj, order, bridge_detect, mark, 1, 0);
 
        // If flag is zero, then Bridge
        // is present in the graph
        if (flag == 0)
        {
            document.write("-1");
        }
 
        // Else print the direction of
        // Edges assigned
        else
        {
            for(let it = 0; it < ans.length - 1; it++)
            {
                document.write(ans[it][0] + "->" + ans[it][1] + "</br>");
            }
        }
    }
 
    // Function to create graph
    function createGraph(Edges, adj, M)
    {
 
        // Traverse the Edges
        for(let i = 0; i < M; i++)
        {
            let u = Edges[i][0];
            let v = Edges[i][1];
 
            // Push the edges in an
            // adjacency list
            adj[u].push(v);
            adj[v].push(u);
        }
    }
     
    // N vertices and M Edges
    let N = 5, M = 6;
       
    let Edges = [ [ 0, 1 ], [ 0, 2 ],
                     [ 1, 2 ], [ 1, 4 ],
                     [ 2, 3 ], [ 3, 4 ] ];
       
    // To create Adjacency List
    let adj = [];
    ans = [];
       
    for(let i = 0; i < N; i++)
        adj.push([]);
       
    // Create an undirected graph
    createGraph(Edges, adj, M);
       
    // Function Call
    convert(adj, N);
 
// This code is contributed by suresh07.
</script>


Output: 

0->1
2->0
4->1
3->4
2->3
1->2

 

Time Complexity: O(N)
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments