Thursday, January 9, 2025
Google search engine
HomeLanguagesDynamic ProgrammingNumber of distinct words of size N with at most K contiguous...

Number of distinct words of size N with at most K contiguous vowels

Given two integers N and K, the task is to find the number of distinct strings consisting of lowercase alphabets of length N that can be formed with at-most K contiguous vowels. As the answer may be too large, print answer%1000000007.

Input: N = 1, K = 0
Output: 21
Explanation: All the 21 consonants are there which has 0 contiguous vowels and are of length 1.

Input: N = 1, K = 1
Output: 26

Approach: The idea to solve this problem is based on dynamic programming. Follow the steps below to solve the problem: 

  • Let dp[i][j] be the number of ways to make distinct strings of length i where the last j characters of the string are vowels.
  • So the states of dynamic programming are:
    • If j = 0, then dp[i][j] = (dp[i-1][0] + dp[i-1][1] +……+ dp[i-1][K])*21(represented by the integer variable sum) because the last added character should be a consonant than only the value of j will become 0 irrespective of its value on previous states.
    • If i<j then dp[i][j] = 0. Since it is not possible to create a string containing j vowels and has a length less than j.
    • If i == j, then dp[i][j] = 5i because the number of characters in the string is equal to the number of vowels, therefore all the characters should be vowels.
    • If j<i then dp[i][j] = dp[i-1][j-1]*5 because a string of length i with last j characters vowel can be made only if the last character is the vowel and the string of length i-1 has last j – 1 character as vowels.
  • Print the sum of dp[n][0] + dp[n][1] + …… + dp[n][K] as the answer.

Below is the implementation of the above Approach

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Power function to calculate
// long powers with mod
long long int power(long long int x,
                    long long int y,
                    long long int p)
{
    long long int res = 1ll;
 
    x = x % p;
 
    if (x == 0)
        return 0;
 
    while (y > 0) {
 
        if (y & 1)
            res = (res * x) % p;
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
 
// Function for finding number of ways to
// create string with length N and atmost
// K contiguous vowels
int kvowelwords(int N, int K)
{
 
    long long int i, j;
    long long int MOD = 1000000007;
 
    // Array dp to store number of ways
    long long int dp[N + 1][K + 1] = { 0 };
 
    long long int sum = 1;
    for (i = 1; i <= N; i++) {
 
        // dp[i][0] = (dp[i-1][0]+dp[i-1][1]..dp[i-1][k])*21
        dp[i][0] = sum * 21;
        dp[i][0] %= MOD;
 
        // Now setting sum to be dp[i][0]
        sum = dp[i][0];
 
        for (j = 1; j <= K; j++) {
            // If j>i, no ways are possible to create
            // a string with length i and vowel j
            if (j > i)
                dp[i][j] = 0;
            else if (j == i) {
                // If j = i all the character should
                // be vowel
                dp[i][j] = power(5ll, i, MOD);
            }
            else {
                // dp[i][j] relation with dp[i-1][j-1]
                dp[i][j] = dp[i - 1][j - 1] * 5;
            }
 
            dp[i][j] %= MOD;
 
            // Adding dp[i][j] in the sum
            sum += dp[i][j];
            sum %= MOD;
        }
    }
 
    return sum;
}
// Driver Program
int main()
{
    // Input
    int N = 3;
    int K = 3;
 
    // Function Call
    cout << kvowelwords(N, K) << endl;
    return 0;
}


C




// C program for the above approach
#include <stdio.h>
#include <string.h>
 
long long int dp[10000][10000];
 
// Power function to calculate
// long powers with mod
long long int power(long long int x,
                    long long int y,
                    long long int p)
{
    long long int res = 1ll;
 
    x = x % p;
 
    if (x == 0)
        return 0;
 
    while (y > 0) {
 
        if (y & 1)
            res = (res * x) % p;
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
 
// Function for finding number of ways to
// create string with length N and atmost
// K contiguous vowels
int kvowelwords(int N, int K)
{
 
    long long int i, j;
    long long int MOD = 1000000007;
     
   
    long long int sum = 1;
    for (i = 1; i <= N; i++) {
 
        // dp[i][0] = (dp[i-1][0]+dp[i-1][1]..dp[i-1][k])*21
        dp[i][0] = sum * 21;
        dp[i][0] %= MOD;
 
        // Now setting sum to be dp[i][0]
        sum = dp[i][0];
 
        for (j = 1; j <= K; j++) {
            // If j>i, no ways are possible to create
            // a string with length i and vowel j
            if (j > i)
                dp[i][j] = 0;
            else if (j == i) {
                // If j = i all the character should
                // be vowel
                dp[i][j] = power(5ll, i, MOD);
            }
            else {
                // dp[i][j] relation with dp[i-1][j-1]
                dp[i][j] = dp[i - 1][j - 1] * 5;
            }
 
            dp[i][j] %= MOD;
 
            // Adding dp[i][j] in the sum
            sum += dp[i][j];
            sum %= MOD;
        }
    }
 
    return sum;
}
// Driver Program
int main()
{
    // Input
    int N = 3;
    int K = 3;
     
    memset(dp,0,N*K*sizeof (long long int));
 
    // Function Call
    printf("%d",kvowelwords(N, K));
    return 0;
}


Java




// Java program for the above approach
class GFG{
 
// Power function to calculate
// long powers with mod
static int power(int x, int y, int p)
{
    int res = 1;
    x = x % p;
  
    if (x == 0)
        return 0;
  
    while (y > 0)
    {
        if ((y & 1) != 0)
            res = (res * x) % p;
             
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
  
// Function for finding number of ways to
// create string with length N and atmost
// K contiguous vowels
static int kvowelwords(int N, int K)
{
    int i, j;
    int MOD = 1000000007;
  
    // Array dp to store number of ways
    int[][] dp = new int[N + 1][K + 1] ;
  
    int sum = 1;
    for(i = 1; i <= N; i++)
    {
         
        // dp[i][0] = (dp[i-1][0]+dp[i-1][1]..dp[i-1][k])*21
        dp[i][0] = sum * 21;
        dp[i][0] %= MOD;
  
        // Now setting sum to be dp[i][0]
        sum = dp[i][0];
  
        for(j = 1; j <= K; j++)
        {
             
            // If j>i, no ways are possible to create
            // a string with length i and vowel j
            if (j > i)
                dp[i][j] = 0;
                 
            else if (j == i)
            {
                 
                // If j = i all the character should
                // be vowel
                dp[i][j] = power(5, i, MOD);
            }
            else
            {
                 
                // dp[i][j] relation with dp[i-1][j-1]
                dp[i][j] = dp[i - 1][j - 1] * 5;
            }
  
            dp[i][j] %= MOD;
  
            // Adding dp[i][j] in the sum
            sum += dp[i][j];
            sum %= MOD;
        }
    }
    return sum;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Input
    int N = 3;
    int K = 3;
  
    // Function Call
    System.out.println( kvowelwords(N, K));
}
}
 
// This code is contributed by target_2


Python3




# Python3 program for the above approach
 
# Power function to calculate
# long powers with mod
def power(x, y, p):
     
    res = 1
    x = x % p
 
    if (x == 0):
        return 0
 
    while (y > 0):
        if (y & 1):
            res = (res * x) % p
             
        y = y >> 1
        x = (x * x) % p
         
    return res
 
# Function for finding number of ways to
# create string with length N and atmost
# K contiguous vowels
def kvowelwords(N, K):
 
    i, j = 0, 0
    MOD = 1000000007
 
    # Array dp to store number of ways
    dp = [[0 for i in range(K + 1)]
             for i in range(N + 1)]
 
    sum = 1
    for i in range(1, N + 1):
         
        #dp[i][0] = (dp[i-1][0]+dp[i-1][1]..dp[i-1][k])*21
        dp[i][0] = sum * 21
        dp[i][0] %= MOD
 
        # Now setting sum to be dp[i][0]
        sum = dp[i][0]
 
        for j in range(1, K + 1):
             
            # If j>i, no ways are possible to create
            # a string with length i and vowel j
            if (j > i):
                dp[i][j] = 0
            elif (j == i):
                 
                # If j = i all the character should
                # be vowel
                dp[i][j] = power(5, i, MOD)
            else:
                 
                # dp[i][j] relation with dp[i-1][j-1]
                dp[i][j] = dp[i - 1][j - 1] * 5
 
            dp[i][j] %= MOD
 
            # Adding dp[i][j] in the sum
            sum += dp[i][j]
            sum %= MOD
 
    return sum
     
# Driver Code
if __name__ == '__main__':
     
    # Input
    N = 3
    K = 3
 
    # Function Call
    print (kvowelwords(N, K))
 
# This code is contributed by mohit kumar 29


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Power function to calculate
// long powers with mod
static int power(int x, int y, int p)
{
    int res = 1;
    x = x % p;
  
    if (x == 0)
        return 0;
  
    while (y > 0)
    {
        if ((y & 1) != 0)
            res = (res * x) % p;
             
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
  
// Function for finding number of ways to
// create string with length N and atmost
// K contiguous vowels
static int kvowelwords(int N, int K)
{
    int i, j;
    int MOD = 1000000007;
  
    // Array dp to store number of ways
    int[,] dp = new int[N + 1, K + 1];
  
    int sum = 1;
    for(i = 1; i <= N; i++)
    {
         
        // dp[i][0] = (dp[i-1, 0]+dp[i-1, 1]..dp[i-1][k])*21
        dp[i, 0] = sum * 21;
        dp[i, 0] %= MOD;
  
        // Now setting sum to be dp[i][0]
        sum = dp[i, 0];
  
        for(j = 1; j <= K; j++)
        {
             
            // If j>i, no ways are possible to create
            // a string with length i and vowel j
            if (j > i)
                dp[i, j] = 0;
                 
            else if (j == i)
            {
                 
                // If j = i all the character should
                // be vowel
                dp[i, j] = power(5, i, MOD);
            }
            else
            {
                 
                // dp[i][j] relation with dp[i-1][j-1]
                dp[i, j] = dp[i - 1, j - 1] * 5;
            }
  
            dp[i, j] %= MOD;
  
            // Adding dp[i][j] in the sum
            sum += dp[i, j];
            sum %= MOD;
        }
    }
    return sum;
}
 
// Driver Code
public static void Main()
{
     
    // Input
    int N = 3;
    int K = 3;
  
    // Function Call
    Console.Write(kvowelwords(N, K));
}
}
 
// This code is contributed by code_hunt


Javascript




<script>
 
// JavaScript code for above approach
 
// Power function to calculate
// long powers with mod
function power(x, y, p)
{
    let res = 1;
    x = x % p;
  
    if (x == 0)
        return 0;
  
    while (y > 0)
    {
        if ((y & 1) != 0)
            res = (res * x) % p;
             
        y = y >> 1;
        x = (x * x) % p;
    }
    return res;
}
  
// Function for finding number of ways to
// create string with length N and atmost
// K contiguous vowels
function kvowelwords(N, K)
{
    let i, j;
    let MOD = 1000000007;
  
    // Array dp to store number of ways
    let dp = new Array(N + 1)
    // Loop to create 2D array using 1D array
    for (i = 0; i < dp.length; i++) {
        dp[i] = new Array(K + 1);
    }
  
    let sum = 1;
    for(i = 1; i <= N; i++)
    {
         
        // dp[i][0] = (dp[i-1][0]+dp[i-1][1]..dp[i-1][k])*21
        dp[i][0] = sum * 21;
        dp[i][0] %= MOD;
  
        // Now setting sum to be dp[i][0]
        sum = dp[i][0];
  
        for(j = 1; j <= K; j++)
        {
             
            // If j>i, no ways are possible to create
            // a string with length i and vowel j
            if (j > i)
                dp[i][j] = 0;
                 
            else if (j == i)
            {
                 
                // If j = i all the character should
                // be vowel
                dp[i][j] = power(5, i, MOD);
            }
            else
            {
                 
                // dp[i][j] relation with dp[i-1][j-1]
                dp[i][j] = dp[i - 1][j - 1] * 5;
            }
  
            dp[i][j] %= MOD;
  
            // Adding dp[i][j] in the sum
            sum += dp[i][j];
            sum %= MOD;
        }
    }
    return sum;
}
 
// Driver Code
 
    // Input
    let N = 3;
    let K = 3;
  
    // Function Call
    document.write( kvowelwords(N, K));
     
    // This code is contributed by sanjoy_62.
</script>


Output

17576






Time Complexity: O(N×K)
Auxiliary Space: O(N×K)

Approach 2: Recursion with Memoization

C++




#include <iostream>
#include <vector>
using namespace std;
 
const int MOD = 1e9 + 7;
 
int N, K;
vector<vector<vector<int>>> memo;
 
int countWays(int pos, int vowels, bool prevVowel) {
    if (pos == N) return 1;
    if (memo[pos][vowels][prevVowel] != -1) return memo[pos][vowels][prevVowel];
 
    int res = 0;
    // Add a consonant
    res = (res + 21 * countWays(pos + 1, 0, false)) % MOD;
    // Add a vowel
    if (prevVowel && vowels == K) {
        res = (res + 0) % MOD;
    } else {
        res = (res + 5 * countWays(pos + 1, prevVowel ? vowels + 1 : 1, true)) % MOD;
    }
 
    return memo[pos][vowels][prevVowel] = res;
}
 
int kvowelwords(int n, int k) {
    N = n; K = k;
    memo.assign(N, vector<vector<int>>(K + 1, vector<int>(2, -1)));
    return countWays(0, 0, false);
}
 
int main() {
    cout << kvowelwords(3, 3) << endl;
    return 0;
}


Java




import java.util.Arrays;
 
public class KVowelWords {
    static final int MOD = 1000000007;
    static int N, K;
    static int[][][] memo;
 
    // Function to count the number of k-vowel words
    static int countWays(int pos, int vowels, boolean prevVowel) {
        if (pos == N) return 1;
        if (memo[pos][vowels][prevVowel ? 1 : 0] != -1) return memo[pos][vowels][prevVowel ? 1 : 0];
 
        int res = 0;
        // Add a consonant
        res = (res + 21 * countWays(pos + 1, 0, false)) % MOD;
        // Add a vowel
        if (prevVowel && vowels == K) {
            res = (res + 0) % MOD;
        } else {
            res = (res + 5 * countWays(pos + 1, prevVowel ? vowels + 1 : 1, true)) % MOD;
        }
 
        return memo[pos][vowels][prevVowel ? 1 : 0] = res;
    }
 
    // Function to compute the number of k-vowel words
    static int kvowelwords(int n, int k) {
        N = n; K = k;
        memo = new int[N][K + 1][2];
        for (int i = 0; i < N; i++) {
            for (int j = 0; j <= K; j++) {
                Arrays.fill(memo[i][j], -1);
            }
        }
        return countWays(0, 0, false);
    }
 
    public static void main(String[] args) {
        System.out.println(kvowelwords(3, 3));
    }
}


Python3




MOD = 10**9 + 7
 
def countWays(pos, vowels, prevVowel, N, K, memo):
    if pos == N:
        return 1
 
    if memo[pos][vowels][prevVowel] != -1:
        return memo[pos][vowels][prevVowel]
 
    res = 0
    # Add a consonant
    res = (res + 21 * countWays(pos + 1, 0, False, N, K, memo)) % MOD
    # Add a vowel
    if prevVowel and vowels == K:
        res = (res + 0) % MOD
    else:
        res = (res + 5 * countWays(pos + 1, vowels + 1 if prevVowel else 1, True, N, K, memo)) % MOD
 
    memo[pos][vowels][prevVowel] = res
    return res
 
def kvowelwords(n, k):
    N = n
    K = k
    memo = [[[-1 for _ in range(2)] for _ in range(K + 1)] for _ in range(N)]
    return countWays(0, 0, False, N, K, memo)
 
if __name__ == "__main__":
    print(kvowelwords(3, 3))


C#




using System;
using System.Collections.Generic;
 
class Program
{
    const int MOD = 1000000007;
 
    static int N, K;
    static List<List<List<int>>> memo;
 
    static int CountWays(int pos, int vowels, bool prevVowel)
    {
        if (pos == N) return 1;
        if (memo[pos][vowels][prevVowel ? 1 : 0] != -1) return memo[pos][vowels][prevVowel ? 1 : 0];
 
        int res = 0;
        // Add a consonant
        res = (res + 21 * CountWays(pos + 1, 0, false)) % MOD;
        // Add a vowel
        if (prevVowel && vowels == K)
        {
            res = (res + 0) % MOD;
        }
        else
        {
            res = (res + 5 * CountWays(pos + 1, prevVowel ? vowels + 1 : 1, true)) % MOD;
        }
 
        return memo[pos][vowels][prevVowel ? 1 : 0] = res;
    }
 
    static int Kvowelwords(int n, int k)
    {
        N = n; K = k;
        memo = new List<List<List<int>>>(N);
        for (int i = 0; i < N; i++)
        {
            memo.Add(new List<List<int>>(K + 1));
            for (int j = 0; j <= K; j++)
            {
                memo[i].Add(new List<int> { -1, -1 });
            }
        }
        return CountWays(0, 0, false);
    }
 
    static void Main(string[] args)
    {
        Console.WriteLine(Kvowelwords(3, 3));
    }
}


Javascript




const MOD = 1000000007;
 
let N, K;
let memo;
 
// Function to count the ways to form words with specific vowel and consonant rules
function countWays(pos, vowels, prevVowel) {
    // Base case: If we've processed all positions in the word
    if (pos === N) return 1;
 
    // If we have already computed this state, return it from memoization
    if (memo[pos][vowels][prevVowel ? 1 : 0] !== -1) {
        return memo[pos][vowels][prevVowel ? 1 : 0];
    }
 
    let res = 0;
 
    // Add a consonant: There are 21 consonants available
    res = (res + 21 * countWays(pos + 1, 0, false)) % MOD;
 
    // Add a vowel
    if (prevVowel && vowels === K) {
        // If the previous character was a vowel and we've already used K vowels, we can't add more
        res = (res + 0) % MOD;
    } else {
        // Add a vowel: There are 5 vowels available
        res = (res + 5 * countWays(pos + 1, prevVowel ? vowels + 1 : 1, true)) % MOD;
    }
 
    // Memoize the result and return it
    memo[pos][vowels][prevVowel ? 1 : 0] = res;
    return res;
}
 
// Function to calculate the count of words based on given parameters
function kvowelWords(n, k) {
    N = n; // Total word length
    K = k; // Maximum allowed vowels
 
    // Initialize memoization table
    memo = new Array(N).fill(null).map(() => {
        return new Array(K + 1).fill(null).map(() => {
            return [-1, -1];
        });
    });
 
    // Start the recursive counting
    return countWays(0, 0, false);
}
 
// Example usage:
console.log(kvowelWords(3, 3)); // Output the count of words following the rules


Output

17576






Time Complexity: O(N * K)
Auxiliary Space: O(N * K)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments