Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingCount of subsequences in an array with sum less than or equal...

Count of subsequences in an array with sum less than or equal to X

Given an integer array arr[] of size N and an integer X, the task is to count the number of subsequences in that array such that its sum is less than or equal to X
Note: 1 <= N <= 1000 and 1 <= X <= 1000, where N is the size of the array.

Examples:  

Input : arr[] = {84, 87, 73}, X = 100 
Output :
Explanation: The three subsequences with sum less than or equal to 100 are {84}, {87} and {73}.

Input : arr[] = {25, 13, 40}, X = 50 
Output :
Explanation: The four subsequences with sum less than or equal to 50 are {25}, {13}, {40} and {25, 13}. 
 

Naive Approach: Generate all the subsequences of the array and check if the sum is less than or equal to X. 
Time complexity:O(2N)

Efficient Approach: Generate the count of subsequences using Dynamic Programming. In order to solve the problem, follow the steps below: 

  • For any index ind, if arr[ind] ? X then, the count of subsequences including as well as excluding the element at the current index:

countSubsequence(ind, X) = countSubsequence(ind + 1, X) (excluding) + countSubsequence(ind + 1, X – arr[ind]) (including)

  • Else, count subsequences excluding the current index:

countSubsequence(ind, X) = countSubsequence(ind + 1, X) (excluding)

  • Finally, subtract 1 from the final count returned by the function as it also counts an empty subsequence.

Below is the implementation of the above approach:  

C++




// C++ Program to count number
// of subsequences in an array
// with sum less than or equal to X
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to return the count
// of subsequence in an array with sum
// less than or equal to X
int countSubsequenceUtil(
    int ind, int sum,
    int* A, int N,
    vector<vector<int> >& dp)
{
    // Base condition
    if (ind == N)
        return 1;
 
    // Return if the sub-problem
    // is already calculated
    if (dp[ind][sum] != -1)
        return dp[ind][sum];
 
    // Check if the current element is
    // less than or equal to sum
    if (A[ind] <= sum) {
        // Count subsequences excluding
        // the current element
        dp[ind][sum]
            = countSubsequenceUtil(
                  ind + 1,
                  sum, A, N, dp)
              +
 
              // Count subsequences including
              // the current element
              countSubsequenceUtil(
                  ind + 1,
                  sum - A[ind],
                  A, N, dp);
    }
 
    else {
        // Exclude current element
        dp[ind][sum]
            = countSubsequenceUtil(
                ind + 1,
                sum, A,
                N, dp);
    }
 
    // Return the result
    return dp[ind][sum];
}
 
// Function to return the count of subsequence
// in an array with sum less than or equal to X
int countSubsequence(int* A, int N, int X)
{
    // Initialize a DP array
    vector<vector<int> > dp(
        N,
        vector<int>(X + 1, -1));
 
    // Return the result
    return countSubsequenceUtil(0, X, A,
                                N, dp)
           - 1;
}
 
// Driver Code
int main()
{
    int arr[] = { 25, 13, 40 }, X = 50;
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    cout << countSubsequence(arr, N, X);
 
    return 0;
}


Java




// Java program to count number
// of subsequences in an array
// with sum less than or equal to X
class GFG{
 
// Utility function to return the count
// of subsequence in an array with sum
// less than or equal to X
static int countSubsequenceUtil(int ind, int sum,
                                int []A, int N,
                                int [][]dp)
{
     
    // Base condition
    if (ind == N)
        return 1;
 
    // Return if the sub-problem
    // is already calculated
    if (dp[ind][sum] != -1)
        return dp[ind][sum];
 
    // Check if the current element is
    // less than or equal to sum
    if (A[ind] <= sum)
    {
         
        // Count subsequences excluding
        // the current element
        dp[ind][sum] = countSubsequenceUtil(
                           ind + 1, sum,
                           A, N, dp) +
                        
                       // Count subsequences
                       // including the current
                       // element
                       countSubsequenceUtil(
                           ind + 1,
                           sum - A[ind],
                           A, N, dp);
    }
    else
    {
         
        // Exclude current element
        dp[ind][sum] = countSubsequenceUtil(
                           ind + 1, sum,
                           A, N, dp);
    }
 
    // Return the result
    return dp[ind][sum];
}
 
// Function to return the count of subsequence
// in an array with sum less than or equal to X
static int countSubsequence(int[] A, int N, int X)
{
     
    // Initialize a DP array
    int [][]dp = new int[N][X + 1];
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < X + 1; j++)
        {
            dp[i][j] = -1;
        }
    }
     
    // Return the result
    return countSubsequenceUtil(0, X, A,
                                N, dp) - 1;
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 25, 13, 40 }, X = 50;
    int N = arr.length;
 
    System.out.print(countSubsequence(arr, N, X));
}
}
 
// This code is contributed by Rajput-Ji


Python3




# Python program for the above approach:
 
## Utility function to return the count
## of subsequence in an array with sum
## less than or equal to X
def countSubsequenceUtil(ind, s, A, N, dp):
 
    ## Base condition
    if (ind == N):
        return 1
 
    ## Return if the sub-problem
    ## is already calculated
    if (dp[ind][s] != -1):
        return dp[ind][s]
 
    ## Check if the current element is
    ## less than or equal to sum
    if (A[ind] <= s):
         
        ## Count subsequences excluding
        ## the current element
        ## Also, Count subsequences including
        ## the current element
        dp[ind][s] = countSubsequenceUtil(ind + 1, s, A, N, dp) + countSubsequenceUtil(ind + 1, s - A[ind], A, N, dp)
 
             
 
    else:
        ## Exclude current element
        dp[ind][s] = countSubsequenceUtil(ind + 1, s, A, N, dp)
 
    ## Return the result
    return dp[ind][s]
 
## Function to return the count of subsequence
## in an array with sum less than or equal to X
def countSubsequence(A, N, X):
 
    ## Initialize a DP array
    dp = [[-1 for _ in range(X + 1)] for i in range(N)]
 
    ## Return the result
    return countSubsequenceUtil(0, X, A, N, dp) - 1
 
 
## Driver code
if __name__=='__main__':
 
    arr = [25, 13, 40]
    X = 50
 
    N = len(arr)
 
    print(countSubsequence(arr, N, X))


C#




// C# program to count number
// of subsequences in an array
// with sum less than or equal to X
using System;
 
class GFG{
 
// Utility function to return the count
// of subsequence in an array with sum
// less than or equal to X
static int countSubsequenceUtil(int ind, int sum,
                                int []A, int N,
                                int [,]dp)
{
     
    // Base condition
    if (ind == N)
        return 1;
 
    // Return if the sub-problem
    // is already calculated
    if (dp[ind, sum] != -1)
        return dp[ind, sum];
 
    // Check if the current element is
    // less than or equal to sum
    if (A[ind] <= sum)
    {
         
        // Count subsequences excluding
        // the current element
        dp[ind, sum] = countSubsequenceUtil(
                           ind + 1, sum,
                           A, N, dp) +
                            
                       // Count subsequences
                       // including the current
                       // element
                       countSubsequenceUtil(
                           ind + 1,
                           sum - A[ind],
                           A, N, dp);
    }
    else
    {
         
        // Exclude current element
        dp[ind, sum] = countSubsequenceUtil(
                           ind + 1, sum,
                           A, N, dp);
    }
 
    // Return the result
    return dp[ind, sum];
}
 
// Function to return the count of subsequence
// in an array with sum less than or equal to X
static int countSubsequence(int[] A, int N, int X)
{
     
    // Initialize a DP array
    int [,]dp = new int[N, X + 1];
    for(int i = 0; i < N; i++)
    {
        for(int j = 0; j < X + 1; j++)
        {
            dp[i, j] = -1;
        }
    }
     
    // Return the result
    return countSubsequenceUtil(0, X, A,
                                N, dp) - 1;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 25, 13, 40 };
    int X = 50;
    int N = arr.Length;
 
    Console.Write(countSubsequence(arr, N, X));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript program to count number
// of subsequences in an array
// with sum less than or equal to X
 
// Utility function to return the count
// of subsequence in an array with sum
// less than or equal to X
function countSubsequenceUtil(ind, sum, A, N, dp)
{
     
    // Base condition
    if (ind == N)
        return 1;
 
    // Return if the sub-problem
    // is already calculated
    if (dp[ind][sum] != -1)
        return dp[ind][sum];
 
    // Check if the current element is
    // less than or equal to sum
    if (A[ind] <= sum)
    {
         
        // Count subsequences excluding
        // the current element
        dp[ind][sum] = countSubsequenceUtil(
                           ind + 1, sum,
                           A, N, dp) +
                        
                       // Count subsequences
                       // including the current
                       // element
                       countSubsequenceUtil(
                           ind + 1,
                           sum - A[ind],
                           A, N, dp);
    }
    else
    {
         
        // Exclude current element
        dp[ind][sum] = countSubsequenceUtil(
                           ind + 1, sum,
                           A, N, dp);
    }
 
    // Return the result
    return dp[ind][sum];
}
 
// Function to return the count of subsequence
// in an array with sum less than or equal to X
function countSubsequence(A, N, X)
{
     
    // Initialize a DP array
    let dp = new Array(N);
    for(var i = 0; i < dp.length; i++)
    {
        dp[i] = new Array(2);
    }
 
    for(let i = 0; i < N; i++)
    {
        for(let j = 0; j < X + 1; j++)
        {
            dp[i][j] = -1;
        }
    }
     
    // Return the result
    return countSubsequenceUtil(0, X, A,
                                N, dp) - 1;
}
   
// Driver Code
let arr = [ 25, 13, 40 ], X = 50;
let N = arr.length;
 
document.write(countSubsequence(arr, N, X));
 
// This code is contributed by susmitakundugoaldanga
 
</script>


Output

4

Time Complexity: O(N*X)
Auxiliary Space: O(N*X)

Efficient approach: Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a DP to store the solution of the subproblems.
  • Initialize the DP  with base cases when index = n then dp[i][j] = 1.
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
  • Return the final solution stored in dp[0][x] – 1.

Implementation :

C++




// C++ program for above approach
 
#include <bits/stdc++.h>
using namespace std;
 
int countSubsequence(int* A, int N, int X)
{
    // Initialize a DP array
    int dp[N+1][X+1];
    memset(dp, 0, sizeof(dp));
     
    // Set Base Case
    for(int i=0 ; i<=N ;i++){
        for(int j=0 ;j<=X ; j++){
            if(i==N){
                dp[i][j] = 1;
            }
        }
    }
 
    // Fill the DP table
    // iterate over subproblems and get the current
    // solution for previous computations
    for(int i=N-1; i>=0; i--) {
        for(int j=1; j<=X; j++) {
             
            // update current value
            if(A[i] <= j) { // Fixed index here
                dp[i][j] = dp[i+1][j] + dp[i+1][j-A[i]];
            } else {
                dp[i][j] = dp[i+1][j];
            }
        }
    }
 
    // Return the result
    return dp[0][X] -1;
}
 
// Driver Code
int main()
{
    int arr[] = { 25, 13, 40 }, X = 50;
    int N = sizeof(arr) / sizeof(arr[0]);
     
    // function call
    cout << countSubsequence(arr, N, X);
    return 0;
}
 
// This code is contributed by bhardwajji.


Java




import java.util.*;
 
public class Main {
  public static void main(String[] args) {
    int[] arr = {25, 13, 40};
    int X = 50;
    int N = arr.length;
    System.out.println(countSubsequence(arr, N, X));
  }
 
  public static int countSubsequence(int[] A, int N, int X) {
    // Initialize a DP array
    int[][] dp = new int[N+1][X+1];
    for (int[] row : dp) {
      Arrays.fill(row, 0);
    }
 
    // Set Base Case
    for (int i = 0; i <= N; i++) {
      for (int j = 0; j <= X; j++) {
        if (i == N) {
          dp[i][j] = 1;
        }
      }
    }
 
    // Fill the DP table
    // iterate over subproblems and get the current
    // solution for previous computations
    for (int i = N-1; i >= 0; i--) {
      for (int j = 1; j <= X; j++) {
        // update current value
        if (A[i] <= j) {
          dp[i][j] = dp[i+1][j] + dp[i+1][j-A[i]];
        } else {
          dp[i][j] = dp[i+1][j];
        }
      }
    }
 
    // Return the result
    return dp[0][X] - 1;
  }
}


Python3




def countSubsequence(A, N, X):
    # Initialize a DP array
    dp = [[0 for j in range(X+1)] for i in range(N+1)]
 
    # Set Base Case
    for i in range(N+1):
        for j in range(X+1):
            if i == N:
                dp[i][j] = 1
 
    # Fill the DP table
    # iterate over subproblems and get the current
    # solution for previous computations
    for i in range(N-1, -1, -1):
        for j in range(1, X+1):
 
            # update current value
            if A[i] <= j:
                dp[i][j] = dp[i+1][j] + dp[i+1][j-A[i]]
            else:
                dp[i][j] = dp[i+1][j]
 
    # Return the result
    return dp[0][X] - 1
 
 
# Driver Code
arr = [25, 13, 40]
X = 50
N = len(arr)
 
# function call
print(countSubsequence(arr, N, X))


C#




using System;
 
class Program {
    // Function to count subsequences of an array with sum X
    static int CountSubsequence(int[] A, int N, int X)
    {
        // Initialize a DP array
        int[, ] dp = new int[N + 1, X + 1];
        for (int i = 0; i <= N; i++) {
            for (int j = 0; j <= X; j++) {
                dp[i, j] = 0;
            }
        }
 
        // Set Base Case
        for (int i = 0; i <= N; i++) {
            for (int j = 0; j <= X; j++) {
                if (i == N) {
                    dp[i, j] = 1;
                }
            }
        }
 
        // Fill the DP table
        // iterate over subproblems and get the current
        // solution for previous computations
        for (int i = N - 1; i >= 0; i--) {
            for (int j = 1; j <= X; j++) {
 
                // update current value
                if (A[i] <= j) // Fixed index here
                {
                    dp[i, j] = dp[i + 1, j]
                               + dp[i + 1, j - A[i]];
                }
                else {
                    dp[i, j] = dp[i + 1, j];
                }
            }
        }
 
        // Return the result
        return dp[0, X] - 1;
    }
 
    static void Main(string[] args)
    {
        int[] arr = { 25, 13, 40 };
        int X = 50;
        int N = arr.Length;
 
        // function call
        Console.WriteLine(CountSubsequence(arr, N, X));
    }
}


Javascript




function countSubsequence(A, N, X) {
    // Initialize a DP array
    const dp = Array.from({ length: N + 1 }, () => Array(X + 1).fill(0));
 
    // Set Base Case
    for (let i = 0; i <= N; i++) {
        for (let j = 0; j <= X; j++) {
            if (i === N) {
                dp[i][j] = 1;
            }
        }
    }
 
    // Fill the DP table
    // iterate over subproblems and get the current
    // solution for previous computations
    for (let i = N - 1; i >= 0; i--) {
        for (let j = 1; j <= X; j++) {
 
            // update current value
            if (A[i] <= j) {
                dp[i][j] = dp[i + 1][j] + dp[i + 1][j - A[i]];
            } else {
                dp[i][j] = dp[i + 1][j];
            }
        }
    }
 
    // Return the result
    return dp[0][X] - 1;
}
 
// Driver Code
const arr = [25, 13, 40];
const X = 50;
const N = arr.length;
 
// function call
console.log(countSubsequence(arr, N, X));
 
// This code is contributed by Samim Hossain Mondal.


Output

4

Time Complexity: O(N*X)
Auxiliary Space: O(N*X)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments