Given a square array A of integers of size NxN. The task is to find the minimum sum of a falling path through A.
A falling path will start at any element in the first row and ends in last row. It chooses one element from each next row. The next row’s choice must be in a column that is different from the previous row’s column by at most one.
Examples:
Input: N = 2
mat[2][2] = {{5, 10},{25, 15}}
Output: 20
Selected elements are 5, 15.Input: N = 3
mat[3][3] ={{1, 2, 3}, { 4, 5, 6}, { 7, 8, 9}}
Output: 12
Selected elements are 1, 4, 7.
Approach: This problem has an optimal substructure, meaning that the solutions to sub-problems can be used to solve larger instances of this problem. This makes dynamic programming came into existence.
Let dp[R][C] be the minimum total weight of a falling path starting at [R, C] in first row and reaching to the bottom row of A.
Then, , and the answer is minimum value of first row i:e .
We would make an auxiliary array dp to cache intermediate values dp[R][C]. However, we will use A to cache these values. Our goal is to transform the values of A into the values of dp.
We begins processing each row, starting with the second last row. We set , handling boundary conditions gracefully.
Explanation of above Approach:
Let’s look at the recursion a little more to get a handle on why it works. For an array like A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]], imagine you are at (1, 0) (A[1][0] = 4). You can either go to (2, 0) and get a weight of 7, or (2, 1) and get a weight of 8. Since 7 is lower, we say that the minimum total weight at (1, 0) is dp(1, 0) = 5 + 7 (7 for the original A[R][C].)
After visiting (1, 0), (1, 1), and (1, 2), A [which is storing the values of our dp], looks like [[1, 2, 3], [11, 12, 14], [7, 8, 9]]. We do this procedure again by visiting (0, 0), (0, 1), (0, 2).
We get , and the final answer is min(A[0][C]) = 12 for all C in range 0 to n.
Below is the implementation of above approach.
C++
// C++ Program to minimum required sum #include <bits/stdc++.h> using namespace std; const int n = 3; // Function to return minimum path falling sum int minFallingPathSum( int (&A)[n][n]) { // R = Row and C = Column // We begin from second last row and keep // adding maximum sum. for ( int R = n - 2; R >= 0; --R) { for ( int C = 0; C < n; ++C) { // best = min(A[R+1][C-1], A[R+1][C], A[R+1][C+1]) int best = A[R + 1][C]; if (C > 0) best = min(best, A[R + 1][C - 1]); if (C + 1 < n) best = min(best, A[R + 1][C + 1]); A[R][C] = A[R][C] + best; } } int ans = INT_MAX; for ( int i = 0; i < n; ++i) ans = min(ans, A[0][i]); return ans; } // Driver program int main() { int A[n][n] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; // function to print required answer cout << minFallingPathSum(A); return 0; } |
Java
// Java Program to minimum required sum import java.io.*; class GFG { static int n = 3 ; // Function to return minimum path falling sum static int minFallingPathSum( int A[][]) { // R = Row and C = Column // We begin from second last row and keep // adding maximum sum. for ( int R = n - 2 ; R >= 0 ; --R) { for ( int C = 0 ; C < n; ++C) { // best = min(A[R+1][C-1], A[R+1][C], A[R+1][C+1]) int best = A[R + 1 ][C]; if (C > 0 ) best = Math.min(best, A[R + 1 ][C - 1 ]); if (C + 1 < n) best = Math.min(best, A[R + 1 ][C + 1 ]); A[R][C] = A[R][C] + best; } } int ans = Integer.MAX_VALUE; for ( int i = 0 ; i < n; ++i) ans = Math.min(ans, A[ 0 ][i]); return ans; } // Driver program public static void main (String[] args) { int A[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; // function to print required answer System.out.println( minFallingPathSum(A)); } } // This code is contributed by inder_verma.. |
Python 3
# Python3 Program to minimum # required sum import sys n = 3 # Function to return minimum # path falling sum def minFallingPathSum(A) : # R = Row and C = Column # We begin from second last row and keep # adding maximum sum. for R in range (n - 2 , - 1 , - 1 ) : for C in range (n) : # best = min(A[R+1][C-1], A[R+1][C], # A[R+1][C+1]) best = A[R + 1 ][C] if C > 0 : best = min (best, A[R + 1 ][C - 1 ]) if C + 1 < n : best = min (best, A[R + 1 ][C + 1 ]) A[R][C] = A[R][C] + best ans = sys.maxsize for i in range (n) : ans = min (ans, A[ 0 ][i]) return ans # Driver code if __name__ = = "__main__" : A = [ [ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ] ] # function to print required answer print (minFallingPathSum(A)) # This code is contributed by # ANKITRAI1 |
C#
// C# Program to minimum required sum using System; class GFG { static int n = 3; // Function to return minimum path falling sum static int minFallingPathSum( int [,] A) { // R = Row and C = Column // We begin from second last row and keep // adding maximum sum. for ( int R = n - 2; R >= 0; --R) { for ( int C = 0; C < n; ++C) { // best = min(A[R+1,C-1], A[R+1,C], A[R+1,C+1]) int best = A[R + 1,C]; if (C > 0) best = Math.Min(best, A[R + 1,C - 1]); if (C + 1 < n) best = Math.Min(best, A[R + 1,C + 1]); A[R,C] = A[R,C] + best; } } int ans = int .MaxValue; for ( int i = 0; i < n; ++i) ans = Math.Min(ans, A[0,i]); return ans; } // Driver program public static void Main () { int [,] A = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; // function to print required answer Console.WriteLine( minFallingPathSum(A)); } } // This code is contributed by Subhadeep.. |
Javascript
// JavaScript Program to find minimum required sum const n = 3; // Function to return minimum path falling sum function minFallingPathSum(A) { // R = Row and C = Column // We begin from second last row and keep // adding maximum sum. for (let R = n - 2; R >= 0; --R) { for (let C = 0; C < n; ++C) { // best = min(A[R+1][C-1], A[R+1][C], A[R+1][C+1]) let best = A[R + 1][C]; if (C > 0) best = Math.min(best, A[R + 1][C - 1]); if (C + 1 < n) best = Math.min(best, A[R + 1][C + 1]); A[R][C] = A[R][C] + best; } } let ans = Number.MAX_SAFE_INTEGER; for (let i = 0; i < n; ++i) ans = Math.min(ans, A[0][i]); return ans; } // Driver program function main() { let A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; // function to print required answer console.log(minFallingPathSum(A)); } main(); |
12
Time Complexity: O(N2)
Top-Down Approach:
- Compute a function and follow up the recursive solution.
- Consider all the base conditions.
- Start moving in all the possible directions as mentioned in the question.
- When reached the end corner of the grid, simply consider the minimum fall path sum.
- Return the minimum falling path sum.
Below is the implementation of the above approach:
C++
// C++ Program to minimum required sum #include <bits/stdc++.h> using namespace std; const int n = 3; // Function to return minimum path falling sum int helper( int i, int j, int A[n][n],vector<vector< int >>&dp){ if (j<0 || j>=n) return 1e9; if (i==0) return A[0][j]; if (dp[i][j]!=-1) return dp[i][j]; int a = A[i][j] + helper(i-1,j,A,dp); int b = A[i][j] + helper(i-1,j-1,A,dp); int c = A[i][j] + helper(i-1,j+1,A,dp); return dp[i][j] = min(a,min(b,c)); } int minFallingPathSum( int A[n][n]) { vector<vector< int >> dp(n,vector< int >(n,-1)); int res=1e9; for ( int k=0;k<n;k++){ res=min(res,helper(n-1,k,A,dp)) ; } return res; } // Driver program int main() { int A[n][n] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; // function to print required answer cout << minFallingPathSum(A); return 0; } //This code was contributed by Sanskar |
Java
import java.io.*; class GFG { static int n = 3 ; // Function to return minimum path falling sum public static int minFallingPathSum( int [][] matrix) { int rows = matrix.length; int columns = matrix[ 0 ].length; Integer[][] dp = new Integer[rows][columns]; int ans = Integer.MAX_VALUE; for ( int column = 0 ; column < columns; column += 1 ) { ans = Math.min(ans, minPathSum(rows - 1 , column, matrix, dp)); } return ans; } private static int minPathSum( int row, int column, int [][] matrix, Integer[][] dp) { if (row < 0 ) { return 0 ; } if (column < 0 || column >= matrix[ 0 ].length) { return 100000000 ; } if (dp[row][column] != null ) { return dp[row][column]; } int ans = matrix[row][column] + Math.min(minPathSum(row - 1 , column - 1 , matrix, dp), Math.min(minPathSum(row - 1 , column, matrix, dp), minPathSum(row - 1 , column + 1 , matrix, dp))); return dp[row][column] = ans; } // Driver program public static void main (String[] args) { int A[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; // function to print required answer System.out.println( minFallingPathSum(A)); } } //This code was contributed by Sanskar |
Python3
# Python3 program for the above approach def fallingpathsum(grid, row, col, Row, Col, dp): # Base condition if row = = Row - 1 and col = = Col - 1 : return grid[row][col] # Base condition if row > Row - 1 or col > Col - 1 : return 0 # Respective directions rightdown = fallingpathsum(grid, row + 1 , col, Row, Col, dp) rdd = fallingpathsum(grid, row + 1 , col + 1 , Row, Col, dp) ldd = fallingpathsum(grid, row + 1 , col - 1 , Row, Col, dp) # Checking for duplicates if dp[row][col] = = - 1 : dp[row][col] = grid[row][col] + min (rightdown, ldd, rdd) return dp[row][col] grid = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ],[ 7 , 8 , 9 ]] Row = len (grid) Col = len (grid[ 0 ]) dp = [[ - 1 for i in range (Row)] for _ in range (Col)] print (fallingpathsum(grid, 0 , 0 , Row, Col, dp)) # CODE CONTRIBUTED BY RAMPRASAD KONDOJU |
C#
using System; using System.Collections.Generic; class GFG { static int n = 3; // Function to return minimum path falling sum public static int minFallingPathSum( int [][] matrix) { int rows = matrix.Length; int columns = matrix[0].Length; int [][] dp = new int [rows][]; for ( int i = 0; i < dp.Length; i++) dp[i] = new int [columns]; int ans = int .MaxValue; for ( int column = 0; column < columns; column += 1) { ans = Math.Min(ans, minPathSum(rows - 1, column, matrix, dp)); } return ans; } private static int minPathSum( int row, int column, int [][] matrix, int [][] dp) { if (row < 0) { return 0; } if (column < 0 || column >= matrix[0].Length) { return 100000000; } if (dp[row][column] != 0) { return dp[row][column]; } int ans = matrix[row][column] + Math.Min( minPathSum(row - 1, column - 1, matrix, dp), Math.Min(minPathSum(row - 1, column, matrix, dp), minPathSum(row - 1, column + 1, matrix, dp))); return dp[row][column] = ans; } // Driver program public static void Main( string [] args) { int [][] A = { new int [] { 1, 2, 3 }, new int [] { 4, 5, 6 }, new int [] { 7, 8, 9 } }; // function to print required answer Console.WriteLine(minFallingPathSum(A)); } } // This code is contributed by pradeepkumarppk2003 |
Javascript
// JavaScript Program to find the minimum required sum for the falling path // Constant variable n to define the number of rows and columns const n = 3; // Function to return the minimum path falling sum // i: current row index // j: current column index // A: input 2D array representing the matrix // dp: a 2D array to store the calculated results function helper(i, j, A, dp) { // If current column index is less than 0 or greater than or equal to n, return a large number if (j < 0 || j >= n) { return Number.MAX_SAFE_INTEGER; } // If current row index is 0, return the value at this position in the matrix if (i == 0) { return A[0][j]; } // If the current position has already been calculated, return the result if (dp[i][j] != -1) { return dp[i][j]; } // Calculate the minimum falling path sum by moving to three different positions in the matrix // The current position plus the minimum falling path sum of the position one row above let a = A[i][j] + helper(i-1, j, A, dp); let b = A[i][j] + helper(i-1, j-1, A, dp); let c = A[i][j] + helper(i-1, j+1, A, dp); // Store the result for this position in the dp array return dp[i][j] = Math.min(a, Math.min(b, c)); } // Function to find the minimum falling path sum // A: input 2D array representing the matrix function minFallingPathSum(A) { // Initialize the dp array with -1 let dp = Array.from(Array(n), () => Array(n).fill(-1)); // Initialize the minimum falling path sum with a large number let res = Number.MAX_SAFE_INTEGER; // Loop through all the columns in the last row for (let k = 0; k < n; k++) { // Find the minimum falling path sum from the last row to the first row res = Math.min(res, helper(n-1, k, A, dp)); } // Return the minimum falling path sum return res; } // Driver program let A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; // Log the result of the function to the console console.log(minFallingPathSum(A)); |
12
Complexity Analysis:
- Time Complexity: O(N2)
- Space Complexity: O(N2)+O(N)
Bottom-up Approach:
- Initialize a 2D dp array of size NxN with all values set to zero.
- Iterate over the grid from bottom to top and for each cell, calculate the minimum sum from the three possible paths from the cells below it.
- For each cell (i,j), update the value in the dp array as follows:
dp[i][j] = grid[i][j] + min(dp[i+1][j], dp[i+1][j-1], dp[i+1][j+1]) - For the first row (i=0), we will not have any cells below, so the value of the cell is equal to the grid value.
- After iterating over the entire grid, the minimum sum is the minimum value in the first row of the dp array.
- Return the minimum sum.
Implementation:
C++
// C++ Program to minimum required sum #include <bits/stdc++.h> using namespace std; const int n = 3; // Function to return minimum path falling sum int minFallingPathSum( int A[n][n]) { int ans = 0; vector<vector< int > > dp(n, vector< int >(n, 0)); for ( int i = 0; i < n; i++) { int minimum = INT_MAX; for ( int j = 0; j < n; j++) { if (i == 0) { dp[i][j] = A[i][j]; minimum = min(minimum, dp[i][j]); continue ; } int up = A[i][j]; int left = A[i][j], right = A[i][j]; up += dp[i - 1][j]; if (j > 0) { left += dp[i - 1][j - 1]; } else { left = INT_MAX; } if (j < n - 1) { right += dp[i - 1][j + 1]; } else { right = INT_MAX; } dp[i][j] += min(left, min(right, up)); minimum = min(minimum, dp[i][j]); } ans = minimum; } return ans; } // Driver program int main() { int A[n][n] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } }; // function to print required answer cout << minFallingPathSum(A); return 0; } |
Java
// Java Program to minimum required sum import java.io.*; class GFG { static int n = 3 ; // Function to return minimum path falling sum static int minFallingPathSum( int A[][]) { // corner case if (A == null || A.length == 0 || A[ 0 ].length == 0 ) return 0 ; int m = A.length; int n = A[ 0 ].length; int [][] M = new int [m][n]; // M[i][j] represents the min // sum from top to A[i][j] // M[0][j] stays the same // M[i][j] = min(M[i - 1][j - 1], M[i - 1][j], M[i - // 1][j + 1]) + A[i][j] // copy the 1st row to M[0] for ( int j = 0 ; j < n; j++) { M[ 0 ][j] = A[ 0 ][j]; } for ( int i = 1 ; i < m; i++) { for ( int j = 0 ; j < n; j++) { if (j == 0 ) { M[i][j] = Math.min(M[i - 1 ][j], M[i - 1 ][j + 1 ]); } else if (j == n - 1 ) { M[i][j] = Math.min(M[i - 1 ][j - 1 ], M[i - 1 ][j]); } else { M[i][j] = Math.min(M[i - 1 ][j - 1 ], M[i - 1 ][j]); M[i][j] = Math.min(M[i][j], M[i - 1 ][j + 1 ]); } M[i][j] += A[i][j]; } } int min = Integer.MAX_VALUE; for ( int num : M[m - 1 ]) { min = Math.min(min, num); } return min; } // Driver program public static void main(String[] args) { int A[][] = { { 1 , 2 , 3 }, { 4 , 5 , 6 }, { 7 , 8 , 9 } }; // function to print required answer System.out.println(minFallingPathSum(A)); } } |
C#
using System; class GFG { static int n = 3; // Function to return minimum path falling sum static int MinFallingPathSum( int [][] A) { // corner case if (A == null || A.Length == 0 || A[0].Length == 0) return 0; int m = A.Length; int n = A[0].Length; int [][] M = new int [m][]; for ( int i = 0; i < m; i++) { M[i] = new int [n]; } // M[i][j] represents the min // sum from top to A[i][j] // M[0][j] stays the same // M[i][j] = min(M[i - 1][j - 1], M[i - 1][j], // M[i - 1][j + 1]) + A[i][j] // copy the 1st row to M[0] for ( int j = 0; j < n; j++) { M[0][j] = A[0][j]; } for ( int i = 1; i < m; i++) { for ( int j = 0; j < n; j++) { if (j == 0) { M[i][j] = Math.Min(M[i - 1][j], M[i - 1][j + 1]); } else if (j == n - 1) { M[i][j] = Math.Min(M[i - 1][j - 1], M[i - 1][j]); } else { M[i][j] = Math.Min(M[i - 1][j - 1], M[i - 1][j]); M[i][j] = Math.Min(M[i][j], M[i - 1][j + 1]); } M[i][j] += A[i][j]; } } int min = int .MaxValue; foreach ( int num in M[m - 1]) { min = Math.Min(min, num); } return min; } // Driver program static void Main( string [] args) { int [][] A = new int [][] { new int [] { 1, 2, 3 }, new int [] { 4, 5, 6 }, new int [] { 7, 8, 9 } }; // function to print required answer Console.WriteLine(MinFallingPathSum(A)); } } |
Javascript
// JavaScript Program for Minimum sum falling path in a NxN grid (Bottom-up Approach) const n = 3; function minFallingPathSum(A) { let dp = Array.from(Array(n), () => Array(n).fill(0)); // Copy the first row of the original matrix to the dp matrix for (let i = 0; i < n; i++) { dp[0][i] = A[0][i]; } // Iterate through the rows of the dp matrix for (let i = 1; i < n; i++) { for (let j = 0; j < n; j++) { // Get the minimum sum from the cells above the current cell let a = (j > 0) ? dp[i - 1][j - 1] : Number.MAX_SAFE_INTEGER; let b = dp[i - 1][j]; let c = (j < n - 1) ? dp[i - 1][j + 1] : Number.MAX_SAFE_INTEGER; // Update the current cell in the dp matrix with the minimum sum dp[i][j] = A[i][j] + Math.min(a, Math.min(b, c)); } } // Return the minimum sum in the last row of the dp matrix return Math.min(...dp[n - 1]); } // Example input let A = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ]; console.log(minFallingPathSum(A)); |
Python3
# Python program to minimum required sum import sys n = 3 # Function to return minimum path falling sum def minFallingPathSum(A): ans = 0 dp = [[ 0 for i in range (n)] for j in range (n)] for i in range (n): minimum = sys.maxsize for j in range (n): if i = = 0 : dp[i][j] = A[i][j] minimum = min (minimum, dp[i][j]) continue up = A[i][j] left = A[i][j] right = A[i][j] up + = dp[i - 1 ][j] if j > 0 : left + = dp[i - 1 ][j - 1 ] else : left = sys.maxsize if j < n - 1 : right + = dp[i - 1 ][j + 1 ] else : right = sys.maxsize dp[i][j] + = min (left, min (right, up)) minimum = min (minimum, dp[i][j]) ans = minimum return ans # Driver program A = [[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]] # function to print required answer print (minFallingPathSum(A)) # This code is contributed by karthik |
12
Complexity Analysis:
- Time Complexity: O(N2)
- Space Complexity: O(N2)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!