Thursday, January 9, 2025
Google search engine

Treasure and Cities

Given n cities: x1, x2, …… xn: each associated with T[i] (treasure) and C[i] (color). You can choose to visit a city or skip it. Only moving in the forward direction is allowed.When you visit a city you receive the following amount: 

  1. A*T[i] if the color of visited city is the same as color of previously visited city
  2. B*T[i] if this is the first city visited or if the color of the visited city is different from the color of the previously visited city.The values of T[i], A and B can be negative while C[i] ranges from 1 to n.

We have to compute the maximum profit possible.

Examples:  

Input :  A = -5, B = 7
Treasure = {4, 8, 2, 9}
color = {2, 2, 3, 2}
Output : 133
Visit city 2, 3 and 4. Profit = 8*7+2*7+9*7 = 133
Input : A = 5, B = -7
Treasure = {4, 8, 2, 9}
color = {2, 2, 3, 2}
Output: 57
Visit city 1, 2, 4. Profit = (-7)*4+8*5+9*5 = 57

Source : Oracle Interview Experience Set 61.

This is a variation of standard 0/1 Knapsack problem. The idea is to either visit a city or skip it and return the maximum of both the cases.

Below is the solution of above problem. 

C++




#include <bits/stdc++.h>
using namespace std;
 
// k is current index and col is previous color.
int MaxProfit(int treasure[], int color[], int n,
              int k, int col, int A, int B)
{
    int sum = 0;
 
    if (k == n) // base case
        return 0;
 
    // we have two options
    // either visit current city or skip that
 
    // check if color of this city is equal
    // to prev visited city
    if (col == color[k])
        sum += max(A * treasure[k] +
                MaxProfit(treasure, color, n,
                       k + 1, color[k], A, B),
                MaxProfit(treasure, color, n,
                          k + 1, col, A, B));
    else
        sum += max(B * treasure[k] +                                         
                MaxProfit(treasure, color, n,
                       k + 1, color[k], A, B),
               MaxProfit(treasure, color, n,
                          k + 1, col, A, B));
 
    // return max of both options
    return sum;
}
 
int main()
{
 
    int A = -5, B = 7;
    int treasure[] = { 4, 8, 2, 9 };
    int color[] = { 2, 2, 6, 2 };
    int n = sizeof(color) / sizeof(color[0]);
 
    // Initially begin with color 0
    cout << MaxProfit(treasure, color, n, 0, 0, A, B);
    return 0;
}


Java




class GFG{
 
// k is current index and col is previous color.
static int MaxProfit(int treasure[], int color[], int n,
            int k, int col, int A, int B)
{
    int sum = 0;
 
    if (k == n) // base case
        return 0;
 
    // we have two options
    // either visit current city or skip that
 
    // check if color of this city is equal
    // to prev visited city
    if (col == color[k])
        sum += Math.max(A * treasure[k] +
                MaxProfit(treasure, color, n,
                    k + 1, color[k], A, B),
                MaxProfit(treasure, color, n,
                        k + 1, col, A, B));
    else
        sum += Math.max(B * treasure[k] +                                        
                MaxProfit(treasure, color, n,
                    k + 1, color[k], A, B),
            MaxProfit(treasure, color, n,
                        k + 1, col, A, B));
 
    // return max of both options
    return sum;
}
 
public static void main(String[] args)
{
 
    int A = -5, B = 7;
    int treasure[] = { 4, 8, 2, 9 };
    int color[] = { 2, 2, 6, 2 };
    int n = color.length;
 
    // Initially begin with color 0
    System.out.print(MaxProfit(treasure, color, n, 0, 0, A, B));
}
}
 
// This code is contributed by PrinciRaj1992


Python3




# k is current index and col
# is previous color.
def MaxProfit(treasure, color, n,
                    k, col, A, B):
    sum = 0
    if k == n:
        return 0
 
    # we have two options either
    # visit current city or skip that
 
    # check if color of this city
    # is equal to prev visited city
    if col== color[k]:
        sum += max(A * treasure[k] +
                MaxProfit(treasure, color, n,
                       k + 1, color[k], A, B),
                MaxProfit(treasure, color, n,
                            k + 1, col, A, B))
    else:
        sum += max(B * treasure[k] +                                       
               MaxProfit(treasure, color, n,
                        k + 1, color[k], A, B),
               MaxProfit(treasure, color, n,
                           k + 1, col, A, B))
 
    # return max of both options
    return sum
 
# Driver Code
A = -5
B= 7
treasure = [4, 8, 2, 9]
color = [2, 2, 6, 2]
n = len(color)
 
# Initially begin with color 0
print( MaxProfit(treasure, color,
                 n, 0, 0, A, B))
 
# This code is contributed
# by Shrikant13


C#




using System;
 
class GFG
{
 
// k is current index and col is previous color.
static int MaxProfit(int []treasure, int []color, int n,
            int k, int col, int A, int B)
{
    int sum = 0;
 
    if (k == n) // base case
        return 0;
 
    // we have two options
    // either visit current city or skip that
 
    // check if color of this city is equal
    // to prev visited city
    if (col == color[k])
        sum += Math.Max(A * treasure[k] +
                MaxProfit(treasure, color, n,
                    k + 1, color[k], A, B),
                MaxProfit(treasure, color, n,
                        k + 1, col, A, B));
    else
        sum += Math.Max(B * treasure[k] +                                        
                MaxProfit(treasure, color, n,
                    k + 1, color[k], A, B),
            MaxProfit(treasure, color, n,
                        k + 1, col, A, B));
 
    // return max of both options
    return sum;
}
 
// Driver code
public static void Main(String[] args)
{
 
    int A = -5, B = 7;
    int []treasure = { 4, 8, 2, 9 };
    int []color = { 2, 2, 6, 2 };
    int n = color.Length;
 
    // Initially begin with color 0
    Console.Write(MaxProfit(treasure, color, n, 0, 0, A, B));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
 
// k is current index and col is previous color.
function MaxProfit(treasure,color,n,k,col,A,B)
{
    let sum = 0;
  
    if (k == n) // base case
        return 0;
  
    // we have two options
    // either visit current city or skip that
  
    // check if color of this city is equal
    // to prev visited city
    if (col == color[k])
        sum += Math.max(A * treasure[k] +
                MaxProfit(treasure, color, n,
                    k + 1, color[k], A, B),
                MaxProfit(treasure, color, n,
                        k + 1, col, A, B));
    else
        sum += Math.max(B * treasure[k] +                                       
                MaxProfit(treasure, color, n,
                    k + 1, color[k], A, B),
            MaxProfit(treasure, color, n,
                        k + 1, col, A, B));
  
    // return max of both options
    return sum;
}
 
let A = -5, B = 7;
let treasure = [ 4, 8, 2, 9 ];
let color = [ 2, 2, 6, 2 ];
let n = color.length;
 
// Initially begin with color 0
document.write(MaxProfit(treasure, color, n, 0, 0, A, B));
 
// This code is contributed by rag2127
</script>


Output

133


Since subproblems are evaluated again, this problem has Overlapping Subproblems property. 

Following is Dynamic Programming based implementation.

C++




// A memoization based program to find maximum
// treasure that can be collected.
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 1001;
 
int dp[MAX][MAX];
 
// k is current index and col is previous color.
int MaxProfit(int treasure[], int color[], int n,
              int k, int col, int A, int B)
{
    if (k == n) // base case
        return dp[k][col] = 0;
 
    if (dp[k][col] != -1)
        return dp[k][col];
 
    int sum = 0;
 
    // we have two options
    // either visit current city or skip that
 
    if (col == color[k]) // check if color of this city is equal to prev visited city
        sum += max(A * treasure[k] +
               MaxProfit(treasure, color, n, k + 1,
                                     color[k], A, B), 
               MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
    else
        sum += max(B * treasure[k] +
                MaxProfit(treasure, color, n, k + 1,
                                   color[k], A, B),
                MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
 
    // return max of both options
    return dp[k][col] = sum;
}
 
int main()
{
    int A = -5, B = 7;
    int treasure[] = { 4, 8, 2, 9 };
    int color[] = { 2, 2, 6, 2 };
    int n = sizeof(color) / sizeof(color[0]);
    memset(dp, -1, sizeof(dp));
    cout << MaxProfit(treasure, color, n, 0, 0, A, B);
    return 0;
}


Java




// A memoization based program to find maximum
// treasure that can be collected.
import java.util.*;
 
class GFG
{
 
static int MAX = 1001;
 
static int [][]dp = new int[MAX][MAX];
 
// k is current index and col is previous color.
static int MaxProfit(int treasure[], int color[], int n,
            int k, int col, int A, int B)
{
    if (k == n) // base case
        return dp[k][col] = 0;
 
    if (dp[k][col] != -1)
        return dp[k][col];
 
    int sum = 0;
 
    // we have two options
    // either visit current city or skip that
     
    // check if color of this city
    // is equal to prev visited city
    if (col == color[k])
        sum += Math.max(A * treasure[k] +
            MaxProfit(treasure, color, n, k + 1,
                                    color[k], A, B),
            MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
    else
        sum += Math.max(B * treasure[k] +
                MaxProfit(treasure, color, n, k + 1,
                                color[k], A, B),
                MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
 
    // return max of both options
    return dp[k][col] = sum;
}
 
// Driver code
public static void main(String[] args)
{
    int A = -5, B = 7;
    int treasure[] = { 4, 8, 2, 9 };
    int color[] = { 2, 2, 6, 2 };
    int n = color.length;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < MAX; j++)
            dp[i][j] = -1;
    System.out.print(MaxProfit(treasure, color, n, 0, 0, A, B));
}
}
 
// This code is contributed by 29AjayKumar


Python3




# A memoization based program to find maximum
# treasure that can be collected.
MAX = 1001
 
dp = [[-1 for i in range(MAX)] for i in range(MAX)]
 
# k is current index and col is previous color.
def MaxProfit(treasure, color, n,k, col, A, B):
    if (k == n):
         
        # base case
        dp[k][col] = 0
        return dp[k][col]
    if (dp[k][col] != -1):
        return dp[k][col]
     
    summ = 0
     
    # we have two options
    # either visit current city or skip that
    if (col == color[k]):
         
        # check if color of this city is equal to prev visited city
        summ += max(A * treasure[k] + MaxProfit(treasure,
                color, n, k + 1,color[k], A, B),
                MaxProfit(treasure, color, n, k + 1, col, A, B))
    else:
        summ += max(B * treasure[k] + MaxProfit(treasure,
                color, n, k + 1,color[k], A, B),
                MaxProfit(treasure, color, n, k + 1, col, A, B))
    dp[k][col] = summ
     
    # return max of both options
    return dp[k][col]
 
# Driver code
A = -5
B = 7
treasure = [ 4, 8, 2, 9 ]
color = [ 2, 2, 6, 2 ]
n = len(color)
print(MaxProfit(treasure, color, n, 0, 0, A, B))
 
# This code is contributed by shubhamsingh10


C#




// A memoization based program to find maximum
// treasure that can be collected.
using System;
 
class GFG
{
  
static int MAX = 1001;
  
static int [,]dp = new int[MAX, MAX];
  
// k is current index and col is previous color.
static int MaxProfit(int []treasure, int []color, int n,
            int k, int col, int A, int B)
{
    if (k == n) // base case
        return dp[k, col] = 0;
  
    if (dp[k, col] != -1)
        return dp[k, col];
  
    int sum = 0;
  
    // we have two options
    // either visit current city or skip that
      
    // check if color of this city
    // is equal to prev visited city
    if (col == color[k])
        sum += Math.Max(A * treasure[k] +
            MaxProfit(treasure, color, n, k + 1,
                                    color[k], A, B),
            MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
    else
        sum += Math.Max(B * treasure[k] +
                MaxProfit(treasure, color, n, k + 1,
                                color[k], A, B),
                MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
  
    // return max of both options
    return dp[k, col] = sum;
}
  
// Driver code
public static void Main(String[] args)
{
    int A = -5, B = 7;
    int []treasure = { 4, 8, 2, 9 };
    int []color = { 2, 2, 6, 2 };
    int n = color.Length;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < MAX; j++)
            dp[i, j] = -1;
    Console.Write(MaxProfit(treasure, color, n, 0, 0, A, B));
}
}
 
// This code is contributed by PrinciRaj1992


Javascript




<script>
// A memoization based program to find maximum
// treasure that can be collected.
 
let MAX = 1001;
let dp = new Array(MAX);
 
for(let i = 0; i < MAX; i++)
{
    dp[i] = new Array(MAX);
    for(let j = 0; j < MAX; j++)
        dp[i][j] = -1;
}
 
// k is current index and col is previous color.
function MaxProfit(treasure, color, n, k, col, A, B)
{
    if (k == n) // base case
        return dp[k][col] = 0;
  
    if (dp[k][col] != -1)
        return dp[k][col];
  
    let sum = 0;
  
    // we have two options
    // either visit current city or skip that
      
    // check if color of this city
    // is equal to prev visited city
    if (col == color[k])
        sum += Math.max(A * treasure[k] +
            MaxProfit(treasure, color, n, k + 1,
                                    color[k], A, B),
            MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
    else
        sum += Math.max(B * treasure[k] +
                MaxProfit(treasure, color, n, k + 1,
                                color[k], A, B),
                MaxProfit(treasure, color, n, k + 1,
                                        col, A, B));
  
    // return max of both options
    return dp[k][col] = sum;
}
 
// Driver code
let A = -5, B = 7;
let treasure=[4, 8, 2, 9];
let color=[2, 2, 6, 2];
let n = color.length;
document.write(MaxProfit(treasure, color, n, 0, 0, A, B));
 
// This code is contributed by avanitrachhadiya2155
</script>


Output

133


Efficient approach : Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a DP to store the solution of the subproblems and initialize it with 0.
  • Initialize the DP with base cases
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
  • Return the final solution stored in dp[0][0].

Implementation :
 

C++




// A tabulation based program to find maximum
// treasure that can be collected.
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 1001;
 
// k is current index and col is previous color.
int MaxProfit(int treasure[], int color[], int n,int A, int B)
{  
    // to store computations
    int dp[n+1][MAX];
     
    // initialize it with 0
    memset(dp, 0, sizeof(dp));
     
    // iteratively get the current
    // value from previous computations
    for(int i=n-1; i>=0; i--){
        for(int j=0; j<MAX; j++){
             
            // to store sum
            int sum = 0;
             
            // update sum in differnt conditions
            if(color[i] == j)
                sum += max(A*treasure[i]+dp[i+1][color[i]], dp[i+1][j]);
            else
                sum += max(B*treasure[i]+dp[i+1][color[i]], dp[i+1][j]);
                 
            // update DP
            dp[i][j] = sum;
        }
    }
     
    // return answer
    return dp[0][0];
}
 
// Driver Code
int main()
{
    int A = -5, B = 7;
    int treasure[] = { 4, 8, 2, 9 };
    int color[] = { 2, 2, 6, 2 };
    int n = sizeof(color) / sizeof(color[0]);
     
    // function call
    cout << MaxProfit(treasure, color, n, A, B);
    return 0;
}


Java




import java.util.Arrays;
 
public class TreasureHunter {
 
    private static final int MAX = 1001;
 
    public static int maxProfit(int[] treasure, int[] color,
                                int n, int A, int B)
    {
        // to store computations
        int[][] dp = new int[n + 1][MAX];
 
        // initialize it with 0
        for (int i = 0; i <= n; i++) {
            Arrays.fill(dp[i], 0);
        }
 
        // iteratively get the current
        // value from previous computations
        for (int i = n - 1; i >= 0; i--) {
            for (int j = 0; j < MAX; j++) {
 
                // to store sum
                int sum = 0;
 
                // update sum in differnt conditions
                if (color[i] == j) {
                    sum += Math.max(
                        A * treasure[i]
                            + dp[i + 1][color[i]],
                        dp[i + 1][j]);
                }
                else {
                    sum += Math.max(
                        B * treasure[i]
                            + dp[i + 1][color[i]],
                        dp[i + 1][j]);
                }
 
                // update DP
                dp[i][j] = sum;
            }
        }
 
        // return answer
        return dp[0][0];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int A = -5, B = 7;
        int[] treasure = { 4, 8, 2, 9 };
        int[] color = { 2, 2, 6, 2 };
        int n = color.length;
 
        // function call
        System.out.println(
            maxProfit(treasure, color, n, A, B));
    }
}


Python




# A tabulation based program to find maximum
# treasure that can be collected.
import sys
MAX = 1001
 
# k is current index and col is previous color.
def MaxProfit(treasure, color, n, A, B):
    # to store computations
    dp = [[0 for j in range(MAX)] for i in range(n+1)]
     
    # iteratively get the current
    # value from previous computations
    for i in range(n-1, -1, -1):
        for j in range(MAX):
            # to store sum
            sum = 0
            # update sum in differnt conditions
            if(color[i] == j):
                sum += max(A*treasure[i]+dp[i+1][color[i]], dp[i+1][j])
            else:
                sum += max(B*treasure[i]+dp[i+1][color[i]], dp[i+1][j])
            # update DP
            dp[i][j] = sum
     
    # return answer
    return dp[0][0]
 
# Driver Code
if __name__ == "__main__":
    A = -5
    B = 7
    treasure = [4, 8, 2, 9]
    color = [2, 2, 6, 2]
    n = len(color)
     
    # function call
    print(MaxProfit(treasure, color, n, A, B))


C#




using System;
 
class GFG
{
    const int MAX = 1001;
 
    // Function to find the maximum treasure that can be collected
    static int MaxProfit(int[] treasure, int[] color, int n, int A, int B)
    {
        // Create a DP array to store the computed values
        int[,] dp = new int[n + 1, MAX];
 
        // Initialize the DP array with 0
        for (int i = 0; i <= n; i++)
        {
            for (int j = 0; j < MAX; j++)
            {
                dp[i, j] = 0;
            }
        }
 
        // Iteratively calculate the maximum profit
        for (int i = n - 1; i >= 0; i--)
        {
            for (int j = 0; j < MAX; j++)
            {
                // Initialize the sum variable
                int sum = 0;
 
                // Update sum based on color match
                if (color[i] == j)
                {
                    sum += Math.Max(A * treasure[i] + dp[i + 1, color[i]], dp[i + 1, j]);
                }
                else
                {
                    sum += Math.Max(B * treasure[i] + dp[i + 1, color[i]], dp[i + 1, j]);
                }
 
                // Update the DP array
                dp[i, j] = sum;
            }
        }
 
        
        return dp[0, 0];
    }
 
    // Driver Code
    static void Main()
    {
        int A = -5, B = 7;
        int[] treasure = { 4, 8, 2, 9 };
        int[] color = { 2, 2, 6, 2 };
        int n = color.Length;
 
        // Function call
        Console.WriteLine(MaxProfit(treasure, color, n, A, B));
    }
}


Javascript




function MaxProfit(treasure, color, n, A, B) {
    const MAX = 1001;
     
    // Initialize a 2D array dp with zeros
    let dp = Array.from({ length: n + 1 }, () => Array(MAX).fill(0));
     
    // Iteratively compute the maximum profit
    for (let i = n - 1; i >= 0; i--) {
        for (let j = 0; j < MAX; j++) {
            let sum = 0;
             
            // Update sum in different conditions
            if (color[i] === j) {
                sum += Math.max(A * treasure[i] + dp[i + 1][color[i]], dp[i + 1][j]);
            } else {
                sum += Math.max(B * treasure[i] + dp[i + 1][color[i]], dp[i + 1][j]);
            }
             
            // Update dp
            dp[i][j] = sum;
        }
    }
     
    // Return the answer
    return dp[0][0];
}
 
// Driver Code
function main() {
    const A = -5;
    const B = 7;
    const treasure = [4, 8, 2, 9];
    const color = [2, 2, 6, 2];
    const n = color.length;
     
    // Function call
    console.log(MaxProfit(treasure, color, n, A, B));
}
 
main();


Output

133


Time Complexity: O(N*MAX)
Auxiliary Space: O(N*MAX)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments