Thursday, January 9, 2025
Google search engine
HomeLanguagesDynamic ProgrammingNumber of ways to write N as a sum of K non-negative...

Number of ways to write N as a sum of K non-negative integers

Given two positive integers N and K, the task is to count the number of ways to write N as a sum of K non-negative integers.

Examples: 

Input: N = 2, K = 3 
Output:
Explanation: 
The total ways in which 2 can be split into K non-negative integers are: 
1. (0, 0, 2) 
2. (0, 2, 0) 
3. (2, 0, 0) 
4. (0, 1, 1) 
5. (1, 0, 1) 
6. (1, 1, 0)

Input: N = 3, K = 2 
Output:
Explanation: 
The total ways in which can be split 3 into 2 non-negative integers are: 
1. (0, 3) 
2. (3, 0) 
3. (1, 2) 
4. (2, 1) 

Approach: This problem can be solved using Dynamic Programming. Below are the steps:  

  1. Initialize a 2D array as dp[K+1][N+1] where rows correspond to the number of the element we pick and columns correspond to the corresponding sum.
  2. Start filling the first row and column with taking sum as K in the above table dp[][].
  3. Suppose we reach at ith row and jth column, i.e i elements we can pick and we need to get sum j. To calculate the number of ways till dp[i][j] choose first (i – 1) elements and next (j – x) where x is the sum of first (i – 1) elements.
  4. Repeat the above steps to fill the dp[][] array.
  5. The value dp[n][m] will give the required result.

Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
int countWays(int n, int m)
{
 
    // Initialise dp[][] array
    int dp[m + 1][n + 1];
 
    // Only 1 way to choose the value
    // with sum K
    for (int i = 0; i <= n; i++) {
        dp[1][i] = 1;
    }
 
    // Initialise sum
    int sum;
 
    for (int i = 2; i <= m; i++) {
        for (int j = 0; j <= n; j++) {
            sum = 0;
 
            // Count the ways from previous
            // states
            for (int k = 0; k <= j; k++) {
                sum += dp[i - 1][k];
            }
 
            // Update the sum
            dp[i][j] = sum;
        }
    }
 
    // Return the final count of ways
    return dp[m][n];
}
 
// Driver Code
int main()
{
    int N = 2, K = 3;
 
    // Function call
    cout << countWays(N, K);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
static int countWays(int n, int m)
{
 
    // Initialise dp[][] array
    int [][]dp = new int[m + 1][n + 1];
 
    // Only 1 way to choose the value
    // with sum K
    for(int i = 0; i <= n; i++)
    {
       dp[1][i] = 1;
    }
 
    // Initialise sum
    int sum;
 
    for(int i = 2; i <= m; i++)
    {
       for(int j = 0; j <= n; j++)
       {
          sum = 0;
           
          // Count the ways from previous
          // states
          for(int k = 0; k <= j; k++)
          {
             sum += dp[i - 1][k];
          }
           
          // Update the sum
          dp[i][j] = sum;
       }
    }
 
    // Return the final count of ways
    return dp[m][n];
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 2, K = 3;
 
    // Function call
    System.out.print(countWays(N, K));
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 program for the above approach
 
# Function to count the number of ways
# to write N as sum of k non-negative
# integers
def countWays(n, m):
 
    # Initialise dp[][] array
    dp = [[ 0 for i in range(n + 1)]
              for i in range(m + 1)]
               
    # Only 1 way to choose the value
    # with sum K
    for i in range(n + 1):
        dp[1][i] = 1
 
    # Initialise sum
    sum = 0
 
    for i in range(2, m + 1):
        for j in range(n + 1):
            sum = 0
 
            # Count the ways from previous
            # states
            for k in range(j + 1):
                sum += dp[i - 1][k]
 
            # Update the sum
            dp[i][j] = sum
 
    # Return the final count of ways
    return dp[m][n]
 
# Driver Code
if __name__ == '__main__':
    N = 2
    K = 3
 
    # Function call
    print(countWays(N, K))
 
# This code is contributed by Mohit Kumar


C#




// C# program for the above approach
using System;
 
class GFG{
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
static int countWays(int n, int m)
{
 
    // Initialise [,]dp array
    int [,]dp = new int[m + 1, n + 1];
 
    // Only 1 way to choose the value
    // with sum K
    for(int i = 0; i <= n; i++)
    {
       dp[1, i] = 1;
    }
 
    // Initialise sum
    int sum;
 
    for(int i = 2; i <= m; i++)
    {
       for(int j = 0; j <= n; j++)
       {
          sum = 0;
           
          // Count the ways from previous
          // states
          for(int k = 0; k <= j; k++)
          {
             sum += dp[i - 1, k];
          }
           
          // Update the sum
          dp[i, j] = sum;
       }
    }
 
    // Return the readonly count of ways
    return dp[m, n];
}
 
// Driver Code
public static void Main(String[] args)
{
    int N = 2, K = 3;
 
    // Function call
    Console.Write(countWays(N, K));
}
}
 
// This code is contributed by gauravrajput1


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
function countWays(n, m)
{
 
    // Initialise dp[][] array
    var dp = Array.from(Array(m+1), ()=>Array(n+1));
 
    // Only 1 way to choose the value
    // with sum K
    for (var i = 0; i <= n; i++) {
        dp[1][i] = 1;
    }
 
    // Initialise sum
    var sum;
 
    for (var i = 2; i <= m; i++) {
        for (var j = 0; j <= n; j++) {
            sum = 0;
 
            // Count the ways from previous
            // states
            for (var k = 0; k <= j; k++) {
                sum += dp[i - 1][k];
            }
 
            // Update the sum
            dp[i][j] = sum;
        }
    }
 
    // Return the final count of ways
    return dp[m][n];
}
 
// Driver Code
var N = 2, K = 3;
// Function call
document.write( countWays(N, K));
 
 
</script>


Output: 

6

 

Time Complexity: O(K*N2
Auxiliary Space Complexity: O(N*K) 
 

Optimized Approach: The idea of calculating the sum and then storing the count increases the time complexity. We can decrease it by storing the sum in the above dp[][] table.
Below is the implementation of the above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
int countWays(int n, int m)
{
    // Initialise dp[][] array
    int dp[m + 1][n + 1];
 
    // Fill the dp[][] with sum = m
    for (int i = 0; i <= n; i++) {
        dp[1][i] = 1;
        if (i != 0) {
            dp[1][i] += dp[1][i - 1];
        }
    }
 
    // Iterate the dp[][] to fill the
    // dp[][] array
    for (int i = 2; i <= m; i++) {
        for (int j = 0; j <= n; j++) {
 
            // Condition for first column
            if (j == 0) {
                dp[i][j] = dp[i - 1][j];
            }
 
            // Else fill the dp[][] with
            // sum till (i, j)
            else {
                dp[i][j] = dp[i - 1][j];
 
                // If reach the end, then
                // return the value
                if (i == m && j == n) {
                    return dp[i][j];
                }
 
                // Update at current index
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
}
 
// Driver Code
int main()
{
    int N = 2, K = 3;
 
    // Function call
    cout << countWays(N, K);
    return 0;
}


Java




// Java program for the above approach
import java.util.*;
class GFG{
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
static int countWays(int n, int m)
{
    // Initialise dp[][] array
    int [][]dp = new int[m + 1][n + 1];
 
    // Fill the dp[][] with sum = m
    for (int i = 0; i <= n; i++)
    {
        dp[1][i] = 1;
        if (i != 0)
        {
            dp[1][i] += dp[1][i - 1];
        }
    }
 
    // Iterate the dp[][] to fill the
    // dp[][] array
    for (int i = 2; i <= m; i++)
    {
        for (int j = 0; j <= n; j++)
        {
 
            // Condition for first column
            if (j == 0)
            {
                dp[i][j] = dp[i - 1][j];
            }
 
            // Else fill the dp[][] with
            // sum till (i, j)
            else
            {
                dp[i][j] = dp[i - 1][j];
 
                // If reach the end, then
                // return the value
                if (i == m && j == n)
                {
                    return dp[i][j];
                }
 
                // Update at current index
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
    return Integer.MIN_VALUE;
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 2, K = 3;
 
    // Function call
    System.out.print(countWays(N, K));
}
}
 
// This code is contributed by sapnasingh4991


Python3




# Python3 program for the above approach
 
# Function to count the number of ways
# to write N as sum of k non-negative
# integers
def countWays(n, m):
     
    # Initialise dp[][] array
    dp = [[0 for i in range(n + 1)]
             for j in range(m + 1)]
     
    # Fill the dp[][] with sum = m
    for i in range(n + 1):
        dp[1][i] = 1
        if (i != 0):
            dp[1][i] += dp[1][i - 1]
     
    # Iterate the dp[][] to fill the
    # dp[][] array
    for i in range(2, m + 1):
        for j in range(n + 1):
             
            # Condition for first column
            if (j == 0):
                dp[i][j] = dp[i - 1][j]
             
            # Else fill the dp[][] with
            # sum till (i, j)
            else:
                dp[i][j] = dp[i - 1][j]
                 
                # If reach the end, then
                # return the value
                if (i == m and j == n):
                    return dp[i][j]
                 
                # Update at current index
                dp[i][j] += dp[i][j - 1]
                 
# Driver Code
N = 2
K = 3
 
# Function call
print(countWays(N, K))
 
# This code is contributed by ShubhamCoder


C#




// C# program for the above approach
using System;
class GFG{
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
static int countWays(int n, int m)
{
    // Initialise dp[][] array
    int [,]dp = new int[m + 1, n + 1];
 
    // Fill the dp[][] with sum = m
    for (int i = 0; i <= n; i++)
    {
        dp[1, i] = 1;
        if (i != 0)
        {
            dp[1, i] += dp[1, i - 1];
        }
    }
 
    // Iterate the dp[][] to fill the
    // dp[][] array
    for (int i = 2; i <= m; i++)
    {
        for (int j = 0; j <= n; j++)
        {
 
            // Condition for first column
            if (j == 0)
            {
                dp[i, j] = dp[i - 1, j];
            }
 
            // Else fill the dp[][] with
            // sum till (i, j)
            else
            {
                dp[i, j] = dp[i - 1, j];
 
                // If reach the end, then
                // return the value
                if (i == m && j == n)
                {
                    return dp[i, j];
                }
 
                // Update at current index
                dp[i, j] += dp[i, j - 1];
            }
        }
    }
    return Int32.MinValue;
}
 
// Driver Code
public static void Main()
{
    int N = 2, K = 3;
 
    // Function call
    Console.Write(countWays(N, K));
}
}
 
// This code is contributed by Code_Mech


Javascript




<script>
 
// JavaScript program for the above approach
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
function countWays(n,m)
{
    // Initialise dp[][] array
    let dp = new Array(m + 1);
    for(let i=0;i<m+1;i++)
    {
        dp[i]=new Array(n+1);
        for(let j=0;j<n+1;j++)
            dp[i][j]=0;
    }
  
    // Fill the dp[][] with sum = m
    for (let i = 0; i <= n; i++)
    {
        dp[1][i] = 1;
        if (i != 0)
        {
            dp[1][i] += dp[1][i - 1];
        }
    }
  
    // Iterate the dp[][] to fill the
    // dp[][] array
    for (let i = 2; i <= m; i++)
    {
        for (let j = 0; j <= n; j++)
        {
  
            // Condition for first column
            if (j == 0)
            {
                dp[i][j] = dp[i - 1][j];
            }
  
            // Else fill the dp[][] with
            // sum till (i, j)
            else
            {
                dp[i][j] = dp[i - 1][j];
  
                // If reach the end, then
                // return the value
                if (i == m && j == n)
                {
                    return dp[i][j];
                }
  
                // Update at current index
                dp[i][j] += dp[i][j - 1];
            }
        }
    }
    return Number.MIN_VALUE;
}
 
// Driver Code
let N = 2, K = 3;
 
// Function call
document.write(countWays(N, K));
 
 
// This code is contributed by patel2127
 
</script>


Output: 

6

 

Time Complexity: O(K*N) 
Auxiliary Space: O(N*K) 

Efficient Approach : using array instead of 2d matrix to optimize space complexity

In previous code we can se that dp[i][j] is dependent upon dp[i-1][j] or dp[i][j-1] so we can assume that dp[i-1] is previous row and dp[i] is current row.

Implementations Steps :

  • Create two vectors prev and curr each of size n+1, where n is a given number.
  • Initialize them with base cases.
  • Now In previous code change dp[i] to curr and change dp[i-1] to prev to keep track only of the two main rows.
  • After every iteration update previous row to current row to iterate further.

Implementation :

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count the number of ways
// to write N as sum of k non-negative
// integers
int countWays(int n, int m)
{
     
    // initialize 2 vectors determining 2 rows of DP
    vector<int>prev(n+1 , 0);
    vector<int>curr(n+1 , 0);
     
 
    // Base case initialize the prev vector
    for (int i = 0; i <= n; i++) {
        prev[i] = 1;
        if (i != 0) {
            prev[i] += prev[i - 1];
        }
    }
 
    // fill curr vector by the help of prev vector
    for (int i = 2; i <= m; i++) {
        for (int j = 0; j <= n; j++) {
 
            // Condition for first column
            if (j == 0) {
                curr[j] = prev[j];
            }
 
            // Else fill the curr with
            // sum till (i, j)
            else {
                curr[j] = prev[j];
 
                // If reach the end, then
                // return the value
                if (i == m && j == n) {
                    return curr[j];
                }
 
                // Update at current index
                curr[j] += curr[j - 1];
            }
        }
         
        prev = curr;
    }
}
 
// Driver Code
int main()
{
    int N = 2, K = 3;
 
    // Function call
    cout << countWays(N, K);
    return 0;
}


Java




import java.util.*;
 
public class Main {
    // Function to count the number of ways
    // to write N as sum of k non-negative
    // integers
    static int countWays(int n, int m) {
        // initialize 2 vectors determining 2 rows of DP
        int[] prev = new int[n + 1];
        int[] curr = new int[n + 1];
 
        // Base case initialize the prev vector
        for (int i = 0; i <= n; i++) {
            prev[i] = 1;
            if (i != 0) {
                prev[i] += prev[i - 1];
            }
        }
 
        // fill curr vector by the help of prev vector
        for (int i = 2; i <= m; i++) {
            for (int j = 0; j <= n; j++) {
 
                // Condition for first column
                if (j == 0) {
                    curr[j] = prev[j];
                }
 
                // Else fill the curr with
                // sum till (i, j)
                else {
                    curr[j] = prev[j];
 
                    // If reach the end, then
                    // return the value
                    if (i == m && j == n) {
                        return curr[j];
                    }
 
                    // Update at current index
                    curr[j] += curr[j - 1];
                }
            }
 
            // Update prev array
            prev = curr.clone();
        }
         
        return curr[n];
    }
 
    // Driver Code
    public static void main(String[] args) {
        int N = 2, K = 3;
 
        // Function call
        System.out.println(countWays(N, K));
    }
}


Python3




# Define a function to count the number of ways to write N as sum of K non-negative integers
def countWays(n, m):
    # initialize 2 lists determining 2 rows of DP
    prev = [0] * (n + 1)
    curr = [0] * (n + 1)
 
    # Base case initialize the prev list
    for i in range(n + 1):
        prev[i] = 1
        if i != 0:
            prev[i] += prev[i - 1]
 
    # fill curr list by the help of prev list
    for i in range(2, m + 1):
        for j in range(n + 1):
 
            # Condition for first column
            if j == 0:
                curr[j] = prev[j]
 
            # Else fill the curr with sum till (i, j)
            else:
                curr[j] = prev[j]
 
                # If reach the end, then return the value
                if i == m and j == n:
                    return curr[j]
 
                # Update at current index
                curr[j] += curr[j - 1]
 
        prev = curr.copy()
 
# Driver Code
N = 2
K = 3
 
# Function call
print(countWays(N, K))


C#




using System;
 
class GFG
{
    // Function to count the number of ways
    // to write N as sum of k non-negative
    // integers
    static int countWays(int n, int m)
    {
        // Initialize 2 vectors determining 2 rows of DP
        int[] prev = new int[n + 1];
        int[] curr = new int[n + 1];
 
        // Base case initialize the prev vector
        for (int i = 0; i <= n; i++)
        {
            prev[i] = 1;
            if (i != 0)
            {
                prev[i] += prev[i - 1];
            }
        }
 
        // Fill curr vector by the help of prev vector
        for (int i = 2; i <= m; i++)
        {
            for (int j = 0; j <= n; j++)
            {
 
                // Condition for first column
                if (j == 0)
                {
                    curr[j] = prev[j];
                }
 
                // Else fill the curr with
                // sum till (i, j)
                else
                {
                    curr[j] = prev[j];
 
                    // If reach the end, then
                    // return the value
                    if (i == m && j == n)
                    {
                        return curr[j];
                    }
 
                    // Update at current index
                    curr[j] += curr[j - 1];
                }
            }
 
            prev = curr;
        }
 
        return curr[n];
    }
 
    // Driver Code
    static void Main()
    {
        int N = 2, K = 3;
 
        // Function call
        Console.WriteLine(countWays(N, K));
    }
}


Javascript




// Function to count the number of ways
// to write N as sum of k non-negative
// integers
function countWays(n, m) {
  // initialize 2 arrays determining 2 rows of DP
  let prev = new Array(n + 1).fill(0);
  let curr = new Array(n + 1).fill(0);
 
  // Base case initialize the prev array
  for (let i = 0; i <= n; i++) {
    prev[i] = 1;
    if (i != 0) {
      prev[i] += prev[i - 1];
    }
  }
 
  // fill curr array by the help of prev array
  for (let i = 2; i <= m; i++) {
    for (let j = 0; j <= n; j++) {
      // Condition for first column
      if (j == 0) {
        curr[j] = prev[j];
      }
      // Else fill the curr with
      // sum till (i, j)
      else {
        curr[j] = prev[j];
        // If reach the end, then
        // return the value
        if (i == m && j == n) {
          return curr[j];
        }
        // Update at current index
        curr[j] += curr[j - 1];
      }
    }
    prev = [...curr];
  }
}
 
// Driver Code
let N = 2,
  K = 3;
// Function call
console.log(countWays(N, K));


Output

6

Time Complexity: O(K*N) 
Auxiliary Space: O(N)  

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments