Sunday, November 17, 2024
Google search engine
HomeLanguagesDynamic ProgrammingCount of strings where adjacent characters are of difference one

Count of strings where adjacent characters are of difference one

Given a number n, count the number of strings of length n such that every string has adjacent characters with a difference between ASCII values as 1.

Examples

Input :  N = 1
Output : Total strings are 26
         Explanation : For N=1, strings 
         are a, b, c,, ...., x, y, z 

Input :  N = 2
Output : Total strings are 50
         Explanation : For N = 2, strings
         are ab, ba, bc, cb, .., yx, yz, zy

For strings starting with character ‘A’ and length ‘i’, we consider all strings of length ‘i-1’ and starting with character ‘B’
For strings starting with character ‘G’ and length ‘i’, we consider all strings of length ‘i-1’ and starting with character ‘H’ and all strings of length ‘i-1’ and starting with ‘F’.
We take the base case for n = 1, and set result for all 26 characters as 1. This simply means when 1 character string is consider all alphabets from a-z are taken only once.
For N = 2
 

For N = 3
 

Conclusion : For N = n 

countAdjacent(n)
    dp[i][j] finally stores count of strings
             of length i and starting with 
             character j.

    Initialize dp[n+1][27] as 0
    Initialize dp[1][j] = 1 where j = 0 to 25
    for i = 2 to n
      for j = 0 to 25
         if (j = 0)
           dp[i][j] = dp[i-1][j+1];
         else
           dp[i][j] = dp[i-1][j-1] + dp[i-1][j+1];
    Sum of n-th row from 0 to 25 is the result.

Implementation:

C++




// CPP Program to count strings with adjacent
// characters.
#include <bits/stdc++.h>
using namespace std;
 
int countStrs(int n)
{
    long int dp[n + 1][27];
 
    // Initializing arr[n+1][27] to 0
    memset(dp, 0, sizeof(dp));
 
    // Initializing 1st row all 1 from 0 to 25
    for (int i = 0; i <= 25; i++)
        dp[1][i] = 1;
 
    // Begin evaluating from i=2 since 1st row is set
    for (int i = 2; i <= n; i++) {
        for (int j = 0; j <= 25; j++)
 
            // j=0 is 'A' which can make strings
            // of length i using strings of length
            // i-1 and starting with 'B'
            if (j == 0)
                dp[i][j] = dp[i - 1][j + 1];
            else
                dp[i][j] = (dp[i - 1][j - 1] +
                            dp[i - 1][j + 1]);
    }
 
    // Our result is sum of last row.
    long int sum = 0;
    for (int i = 0; i <= 25; i++)
        sum = (sum + dp[n][i]);
    return sum;
}
 
// Driver's Code
int main()
{
    int n = 3;
    cout << "Total strings are : " << countStrs(n);
    return 0;
}


Java




// Java Program to count strings
// with adjacent characters.
import java.io.*;
class GFG {
 
    static long countStrs(int n)
    {
        long[][] dp = new long[n + 1][27];
 
        // Initializing arr[n+1][27] to 0
        for (int i = 0; i < n + 1; i++) {
            for (int j = 0; j < 27; j++) {
                dp[i][j] = 0;
            }
        }
 
        // Initializing 1st row all 1 from 0 to 25
        for (int i = 0; i <= 25; i++) {
            dp[1][i] = 1;
        }
 
        // Begin evaluating from i=2
        // since 1st row is set
        for (int i = 2; i <= n; i++) {
 
            // j=0 is 'A' which can make strings
            for (int j = 0; j <= 25; j++)
 
            // of length i using strings of length
            // i-1 and starting with 'B'
            {
                if (j == 0) {
                    dp[i][j] = dp[i - 1][j + 1];
                }
                else {
                    dp[i][j] = (dp[i - 1][j - 1]
                                + dp[i - 1][j + 1]);
                }
            }
        }
 
        // Our result is sum of last row.
        long sum = 0;
        for (int i = 0; i <= 25; i++) {
            sum = (sum + dp[n][i]);
        }
        return sum;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int n = 3;
        System.out.println("Total strings are : "
                           + countStrs(n));
    }
}
 
// This code is contributed by 29AjayKumar


Python 3




# Python3 Program to count strings with
# adjacent characters.
def countStrs(n):
 
    # Initializing arr[n+1][27] to 0
    dp = [[0 for j in range(27)]
             for i in range(n + 1)]
 
    # Initializing 1st row all 1 from 0 to 25
    for i in range(0, 26):
        dp[1][i] = 1
 
    # Begin evaluating from i=2 since
    # 1st row is set    
    for i in range(2, n + 1):
        for j in range(0, 26):
 
            # j=0 is 'A' which can make strings
            # of length i using strings of length
            # i-1 and starting with 'B'
            if(j == 0):
                dp[i][j] = dp[i - 1][j + 1];
            else:
                dp[i][j] = (dp[i - 1][j - 1] +
                            dp[i - 1][j + 1])
 
    # Our result is sum of last row.        
    sum = 0
    for i in range(0, 26):
        sum = sum + dp[n][i]
 
    return sum
     
# Driver's Code
if __name__ == "__main__":
    n = 3
    print("Total strings are : ", countStrs(n))
     
# This code is contributed by Sairahul Jella


C#




// C# Program to count strings with 
// adjacent characters.
using System;
 
class GFG
{
    static long countStrs(int n)
    {
        long[,] dp = new long[n + 1, 27];
     
        // Initializing arr[n+1][27] to 0
        for(int i = 0; i < n + 1; i++)
            for(int j = 0; j < 27; j++)
                dp[i, j] = 0;
     
        // Initializing 1st row all 1 from 0 to 25
        for (int i = 0; i <= 25; i++)
            dp[1, i] = 1;
     
        // Begin evaluating from i=2 since 1st row is set
        for (int i = 2; i <= n; i++)
        {
            for (int j = 0; j <= 25; j++)
     
                // j=0 is 'A' which can make strings
                // of length i using strings of length
                // i-1 and starting with 'B'
                if (j == 0)
                    dp[i, j] = dp[i - 1, j + 1];
                else
                    dp[i, j] = (dp[i - 1, j - 1] +
                                dp[i - 1, j + 1]);
        }
     
        // Our result is sum of last row.
        long sum = 0;
        for (int i = 0; i <= 25; i++)
            sum = (sum + dp[n, i]);
        return sum;
    }
     
    // Driver Code
    static void Main()
    {
        int n = 3;
        Console.Write("Total strings are : " + countStrs(n));
    }
}
 
// This code is contributed by DrRoot_


Javascript




<script>
// JavaScript Program to count strings
// with adjacent characters.
 
    function countStrs(n)
    {
        let dp = new Array(n + 1);
        // Loop to create 2D array using 1D array
        for (var i = 0; i < dp.length; i++) {
            dp[i] = new Array(2);
        }
 
        // Initializing arr[n+1][27] to 0
        for (let i = 0; i < n + 1; i++)
        {
            for (let j = 0; j < 27; j++)
            {
                dp[i][j] = 0;
            }
        }
 
        // Initializing 1st row all 1 from 0 to 25
        for (let i = 0; i <= 25; i++)
        {
            dp[1][i] = 1;
        }
 
        // Begin evaluating from i=2
        // since 1st row is set
        for (let i = 2; i <= n; i++)
        {
             
            // j=0 is 'A' which can make strings
            for (let j = 0; j <= 25; j++) 
             
            // of length i using strings of length
            // i-1 and starting with 'B'
            {
                if (j == 0)
                {
                    dp[i][j] = dp[i - 1][j + 1];
                }
                else
                {
                    dp[i][j] = (dp[i - 1][j - 1]
                            + dp[i - 1][j + 1]);
                }
            }
        }
 
        // Our result is sum of last row.
        let sum = 0;
        for (let i = 0; i <= 25; i++)
        {
            sum = (sum + dp[n][i]);
        }
        return sum;
    }
  
// Driver Code
 
    let n = 3;
    document.write("Total strings are : " +
                                        countStrs(n));
         
</script>


Output

Total strings are : 98

Time Complexity: O(26*n)
Auxiliary Space: O(26*n)

This article is contributed by Shubham Rana. If you like neveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the neveropen main page and help other Geeks. 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Previous article
Next article
RELATED ARTICLES

Most Popular

Recent Comments