Given two arrays firstArr[], consisting of distinct elements only, and secondArr[], the task is to find the length of LCS between these 2 arrays.
Examples:
Input: firstArr[] = {3, 5, 1, 8}, secondArr[] = {3, 3, 5, 3, 8}
Output: 3.
Explanation: LCS between these two arrays is {3, 5, 8}.Input : firstArr[] = {1, 2, 1}, secondArr[] = {3}
Output: 0
Naive Approach: Follow the steps below to solve the problem using the simplest possible approach:
- Initialize an array dp[][] such that dp[i][j] stores longest common subsequence of firstArr[ :i] and secondArr[ :j].
- Traverse the array firstArr[] and for every array element of the array firstArr[], traverse the array secondArr[].
- If firstArr[i] = secondArr[j]: Set dp[i][j] = dp[i – 1][j – 1] + 1.
- Otherwise: Set dp[i][j] = max(dp[ i – 1][j], dp[i][j – 1]).
Time Complexity: O(N * M), where N and M are the sizes of the arrays firstArr[] and secondArr[] respectively.
Auxiliary Space: O(N * M)
Efficient Approach: To optimize the above approach, follow the steps below:
- Initialize a Map, say mp, to store the mappings map[firstArr[i]] = i, i.e. map elements of the first array to their respective indices.
- Since the elements which are present in secondArr[] but not in the firstArr[] are not useful at all, as they can never be a part of a common subsequence, traverse the array secondArr[] andfor each array element, check if it is present in the Map or not.
- If found to be true, push map[secondArr[i]] into a temporary Array. Otherwise ignore it.
- Find the Longest Increasing Subsequence (LIS) of the obtained temporary array and print its length as the required answer.
Illustration:
firstArr[] = {3, 5, 1, 8}
secondArr={3, 3, 4, 5, 3, 8}
Mapping: 3->0, 5->1, 1->2, 8->3 (From firstArr)
tempArr[] = {0, 0, 1, 0, 3}
Therefore, length of LIS of tempArr[] = 3 ({0, 1, 3})
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the Longest Common // Subsequence between the two arrays int LCS(vector< int >& firstArr, vector< int >& secondArr) { // Maps elements of firstArr[] // to their respective indices unordered_map< int , int > mp; // Traverse the array firstArr[] for ( int i = 0; i < firstArr.size(); i++) { mp[firstArr[i]] = i + 1; } // Stores the indices of common elements // between firstArr[] and secondArr[] vector< int > tempArr; // Traverse the array secondArr[] for ( int i = 0; i < secondArr.size(); i++) { // If current element exists in the Map if (mp.find(secondArr[i]) != mp.end()) { tempArr.push_back(mp[secondArr[i]]); } } // Stores lIS from tempArr[] vector< int > tail; tail.push_back(tempArr[0]); for ( int i = 1; i < tempArr.size(); i++) { if (tempArr[i] > tail.back()) tail.push_back(tempArr[i]); else if (tempArr[i] < tail[0]) tail[0] = tempArr[i]; else { auto it = lower_bound(tail.begin(), tail.end(), tempArr[i]); *it = tempArr[i]; } } return ( int )tail.size(); } // Driver Code int main() { vector< int > firstArr = { 3, 5, 1, 8 }; vector< int > secondArr = { 3, 3, 5, 3, 8 }; cout << LCS(firstArr, secondArr); return 0; } |
Java
// Java program to implement // the above approach import java.util.*; class GFG { // Function to find the Longest Common // Subsequence between the two arrays static int LCS( int [] firstArr, int [] secondArr) { // Maps elements of firstArr[] // to their respective indices HashMap<Integer,Integer> mp = new HashMap<Integer,Integer>(); // Traverse the array firstArr[] for ( int i = 0 ; i < firstArr.length; i++) { mp.put(firstArr[i], i + 1 ); } // Stores the indices of common elements // between firstArr[] and secondArr[] Vector<Integer> tempArr = new Vector<>(); // Traverse the array secondArr[] for ( int i = 0 ; i < secondArr.length; i++) { // If current element exists in the Map if (mp.containsKey(secondArr[i])) { tempArr.add(mp.get(secondArr[i])); } } // Stores lIS from tempArr[] Vector<Integer> tail = new Vector<>(); tail.add(tempArr.get( 0 )); for ( int i = 1 ; i < tempArr.size(); i++) { if (tempArr.get(i) > tail.lastElement()) tail.add(tempArr.get(i)); else if (tempArr.get(i) < tail.get( 0 )) tail.add( 0 , tempArr.get(i)); } return ( int )tail.size(); } // Driver Code public static void main(String[] args) { int [] firstArr = { 3 , 5 , 1 , 8 }; int [] secondArr = { 3 , 3 , 5 , 3 , 8 }; System.out.print(LCS(firstArr, secondArr)); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 program to implement # the above approach from bisect import bisect_left # Function to find the Longest Common # Subsequence between the two arrays def LCS(firstArr, secondArr): # Maps elements of firstArr[] # to their respective indices mp = {} # Traverse the array firstArr[] for i in range ( len (firstArr)): mp[firstArr[i]] = i + 1 # Stores the indices of common elements # between firstArr[] and secondArr[] tempArr = [] # Traverse the array secondArr[] for i in range ( len (secondArr)): # If current element exists in the Map if (secondArr[i] in mp): tempArr.append(mp[secondArr[i]]) # Stores lIS from tempArr[] tail = [] tail.append(tempArr[ 0 ]) for i in range ( 1 , len (tempArr)): if (tempArr[i] > tail[ - 1 ]): tail.append(tempArr[i]) elif (tempArr[i] < tail[ 0 ]): tail[ 0 ] = tempArr[i] else : it = bisect_left(tail, tempArr[i]) it = tempArr[i] return len (tail) # Driver Code if __name__ = = '__main__' : firstArr = [ 3 , 5 , 1 , 8 ] secondArr = [ 3 , 3 , 5 , 3 , 8 ] print (LCS(firstArr, secondArr)) # This code is contributed by mohit kumar 29 |
C#
// C# program to implement // the above approach using System; using System.Collections.Generic; public class GFG { // Function to find the longest Common // Subsequence between the two arrays static int LCS( int [] firstArr, int [] secondArr) { // Maps elements of firstArr[] // to their respective indices Dictionary< int , int > mp = new Dictionary< int , int >(); // Traverse the array firstArr[] for ( int i = 0; i < firstArr.Length; i++) { mp.Add(firstArr[i], i + 1); } // Stores the indices of common elements // between firstArr[] and secondArr[] List< int > tempArr = new List< int >(); // Traverse the array secondArr[] for ( int i = 0; i < secondArr.Length; i++) { // If current element exists in the Map if (mp.ContainsKey(secondArr[i])) { tempArr.Add(mp[secondArr[i]]); } } // Stores lIS from tempArr[] List< int > tail = new List< int >(); tail.Add(tempArr[0]); for ( int i = 1; i < tempArr.Count; i++) { if (tempArr[i] > tail[tail.Count-1]) tail.Add(tempArr[i]); else if (tempArr[i] < tail[0]) tail.Insert(0, tempArr[i]); } return ( int )tail.Count; } // Driver Code public static void Main(String[] args) { int [] firstArr = { 3, 5, 1, 8 }; int [] secondArr = { 3, 3, 5, 3, 8 }; Console.Write(LCS(firstArr, secondArr)); } } // This code is contributed by Rajput-Ji. |
Javascript
<script> // Javascript program to implement // the above approach // Function to find the longest Common // Subsequence between the two arrays function LCS(firstArr, secondArr) { // Maps elements of firstArr[] // to their respective indices let mp = new Map() // Traverse the array firstArr[] for (let i = 0; i < firstArr.length; i++) { mp.set(firstArr[i], i + 1); } // Stores the indices of common elements // between firstArr[] and secondArr[] let tempArr = []; // Traverse the array secondArr[] for (let i = 0; i < secondArr.length; i++) { // If current element exists in the Map if (mp.has(secondArr[i])) { tempArr.push(mp.get(secondArr[i])); } } // Stores lIS from tempArr[] let tail = []; tail.push(tempArr[0]); for (let i = 1; i < tempArr.length; i++) { if (tempArr[i] > tail[tail.length - 1]) tail.push(tempArr[i]); else if (tempArr[i] < tail[0]) tail.unshift(0, tempArr[i]); } return tail.length; } // Driver Code let firstArr = [ 3, 5, 1, 8 ]; let secondArr = [ 3, 3, 5, 3, 8 ]; document.write(LCS(firstArr, secondArr)); // This code is contributed by gfgking </script> |
3
Time Complexity: O(NlogN)
Auxiliary Space: O(N)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!