Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimize given flips required to reduce N to 0

Minimize given flips required to reduce N to 0

Given an integer N, the task is to reduce the value of N to 0 by performing the following operations minimum number of times:

  • Flip the rightmost (0th) bit in the binary representation of N.
  • If (i – 1)th bit is set, then flip the ith bit and clear all the bits from (i – 2)th to 0th bit.

Examples:

Input: N = 3 
Output:
Explanation: 
The binary representation of N (= 3) is 11 
Since 0th bit in binary representation of N(= 3) is set, flipping the 1st bit of binary representation of N modifies N to 1(01). 
Flipping the rightmost bit of binary representation of N(=1) modifies N to 0(00). 
Therefore, the required output is 2

Input: N = 4 
Output: 7

Approach: The problem can be solved based on the following observations:

1 -> 0 => 1 
10 -> 11 -> 01 -> 00 => 2 + 1 = 3 
100 -> 101 -> 111 -> 110 -> 010 -> … => 4 + 2 + 1 = 7 
1000 -> 1001 -> 1011 -> 1010 -> 1110 -> 1111 -> 1101 -> 1100 -> 0100 -> … => 8 + 7 = 15 
Therefore, for N = 2N total (2(N + 1) – 1) operations required.
If N is not a power of 2, then the recurrence relation is: 
MinOp(N) = MinOp((1 << cntBit) – 1) – MinOp(N – (1 << (cntBit – 1)))
cntBit = total count of bits in binary representation of N. 
MinOp(N) denotes minimum count of operations required to reduce N to 0. 
 

Follow the steps below to solve the problem:

  • Calculate the count of bits in binary representation of N using log2(N) + 1.
  • Use the above recurrence relation and calculate the minimum count of operations required to reduce N to 0.

Below is the implementation of the above approach.

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum count of
// operations required to Reduce N to 0
int MinOp(int N)
{
 
    if (N <= 1)
        return N;
 
    // Stores count of
    // bits in N
    int bit = log2(N) + 1;
 
    // Recurrence relation
    return ((1 << bit) - 1)
           - MinOp(N - (1 << (bit - 1)));
}
 
// Driver Code
int main()
{
 
    int N = 4;
    cout << MinOp(N);
    return 0;
}


Java




// Java program to implement
// the above approach
class GFG{
     
// Function to find the minimum count of
// operations required to Reduce N to 0
public static int MinOp(int N)
{
    if (N <= 1)
        return N;
   
    // Stores count of
    // bits in N
    int bit = (int)(Math.log(N) /
                    Math.log(2)) + 1;
   
    // Recurrence relation
    return ((1 << bit) - 1) - MinOp(
        N - (1 << (bit - 1)));
}
 
// Driver code
public static void main(String[] args)
{
    int N = 4;
     
    System.out.println(MinOp(N));
}
}
 
// This code is contributed by divyeshrabadiya07


Python3




# Python program to implement
# the above approach
 
# Function to find the minimum count of
# operations required to Reduce N to 0
import math
def MinOp(N):
    if (N <= 1):
        return N;
 
    # Stores count of
    # bits in N
    bit = (int)(math.log(N) / math.log(2)) + 1;
 
    # Recurrence relation
    return ((1 << bit) - 1) - MinOp(N - (1 << (bit - 1)));
 
# Driver code
if __name__ == '__main__':
    N = 4;
 
    print(MinOp(N));
 
# This code is contributed by 29AjayKumar


C#




// C# program to implement
// the above approach 
using System;
 
class GFG{
     
// Function to find the minimum count of
// operations required to Reduce N to 0
public static int MinOp(int N)
{
    if (N <= 1)
        return N;
         
    // Stores count of
    // bits in N
    int bit = (int)(Math.Log(N) /
                    Math.Log(2)) + 1;
                     
    // Recurrence relation
    return ((1 << bit) - 1) - MinOp(
        N - (1 << (bit - 1)));
}
  
// Driver code
public static void Main()
{
    int N = 4;
     
    Console.WriteLine(MinOp(N));
}
}
 
// This code is contributed by sanjoy_62


Javascript




<script>
// javascript program to implement
// the above approach
 
// Function to find the minimum count of
// operations required to Reduce N to 0
function MinOp(N)
{
    if (N <= 1)
        return N;
    
    // Stores count of
    // bits in N
    let bit = (Math.log(N) /
                    Math.log(2)) + 1;
    
    // Recurrence relation
    return ((1 << bit) - 1) - MinOp(
        N - (1 << (bit - 1)));
}
 
// Driver code
    let N = 4;
    document.write(MinOp(N));
     
    // This code is contributed by souravghosh0416.
</script>


Output: 

7

 

Time Complexity: O(log(N)) //since the logarithm function is used, hence the time complexity is logarithmic
Auxiliary Space: O(1) // since no extra variable is used hence the space is taken by the algorithm is constant

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments