Given two integers L and R, the task is to find the count of numbers in the range [L, R] having prime digits at prime positions and non-prime digits at non-prime positions.
Examples:
Input: L = 5, R = 22
Output: 7
Explanation: The numbers 6, 8, 9, 12, 13, 15, and 17 have prime digits at prime positions and non-prime digits at non-prime positions.Input: L = 20, R = 29
Output: 0
Explanation: There are no numbers which have prime digits at prime positions and non-prime digits at non-prime positions.
Naive Approach: The simplest approach to solve the problem is to iterate over the range [L, R]. For every ith number check if the digits of the number is prime at prime positions and non-prime at non-prime positions or not. If found to be true, then increment the count. Finally, print the count obtained.
Time Complexity: O(R – L + 1) * sqrt(R) * log10(R)
Auxiliary Space: O(1)
Efficient Approach: To optimize the above approach, the idea is to use Digit DP. Following are the recurrence relation between the dynamic programming states:
If i is a prime at prime digits or non-prime at non-prime digits, then x = 1
pos: Stores position of digits
prime: Check if prime digits are present at prime positions and non-prime digits at non-prime positions are present or not.
st: check if a number contains any leading 0.
end: Maximum possible digits at current position
Follow the steps below to solve the problem:
- Initialize a 4D array, say dp[pos][st][tight][prime].
- Compute the value of dp[pos][st][tight][prime] for the number R using memorization, say cntR.
- Compute the value of dp[pos][st][tight][prime] for the number L – 1 using memorization, say cntL.
- Finally, print the value of (cntR – cntL).
Below is the implementation of the above approach:
C++14
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Store digits of a number vector< long long int > num; // Store overlapping subproblems long long int dp[19][2][2][19]; // Function to check if a // number is prime or not bool isPrime( long long int n) { // If n is less than // or equal to 1 if (n <= 1) return false ; // If n is less than // or equal to 3 if (n <= 3) return true ; // If n is a multiple of 2 or 3 if (n % 2 == 0 || n % 3 == 0) return false ; // Iterate over the range [5, n] for ( long long int i = 5; i * i <= n; i = i + 6) { // If n is a multiple of i or (i + 2) if (n % i == 0 || n % (i + 2) == 0) return false ; } return true ; } // Function to count the required // numbers from the given range long long cntNum( long long pos, long long st, long long tight, long long prime) { // Base Case if (pos == num.size()) return 1; // If the subproblems already computed if (dp[pos][st][tight][prime] != -1) return dp[pos][st][tight][prime]; long long int res = 0; // Stores maximum possible // at current digits long long end = (tight == 0) ? num[pos] : 9; // Iterate over all possible digits // at current position for ( long long i = 0; i <= end; i++) { // Check if i is the maximum possible // digit at current position or not long long ntight = (i < end) ? 1 : tight; // Check if a number contains // leading 0s or not long long int nzero = (i != 0) ? 1 : st; // If number has only leading zeros // and digit is non-zero if ((nzero == 1) && isPrime(i) && isPrime(prime)) { // Prime digits at prime positions res += cntNum(pos + 1, nzero, ntight, prime + 1); } if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) { // Non-prime digits at // non-prime positions res += cntNum(pos + 1, nzero, ntight, prime + 1); } // If the number has only leading zeros // and i is zero, if (nzero == 0) res += cntNum(pos + 1, nzero, ntight, prime); } return dp[pos][st][tight][prime] = res; } // Function to find count of numbers in // range [0, b] whose digits are prime // at prime and non-prime at non-prime pos long long int cntZeroRange( long long int b) { num.clear(); // Insert digits of a number, b while (b > 0) { num.push_back(b % 10); b /= 10; } // Reversing the digits in num reverse(num.begin(), num.end()); // Initializing dp with -1 memset (dp, -1, sizeof (dp)); long long int res = cntNum(0, 0, 0, 1); // Returning the value return res; } // Driver Code int main() { // Given range, [L, R] long long int L = 5, R = 22; // Function Call long long int res = cntZeroRange(R) - cntZeroRange(L - 1); // Print answer cout << res << endl; return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG { // Store digits of a number static Vector<Integer> num = new Vector<>(); // Store overlapping subproblems static int [][][][]dp = new int [ 19 ][ 2 ][ 2 ][ 19 ]; // Function to check if a // number is prime or not static boolean isPrime( int n) { // If n is less than // or equal to 1 if (n <= 1 ) return false ; // If n is less than // or equal to 3 if (n <= 3 ) return true ; // If n is a multiple of 2 or 3 if (n % 2 == 0 || n % 3 == 0 ) return false ; // Iterate over the range [5, n] for ( int i = 5 ; i * i <= n; i = i + 6 ) { // If n is a multiple of i or (i + 2) if (n % i == 0 || n % (i + 2 ) == 0 ) return false ; } return true ; } // Function to count the required // numbers from the given range static int cntNum( int pos, int st, int tight, int prime) { // Base Case if (pos == num.size()) return 1 ; // If the subproblems already computed if (dp[pos][st][tight][prime] != - 1 ) return dp[pos][st][tight][prime]; int res = 0 ; // Stores maximum possible // at current digits int end = (tight == 0 ) ? num.get(pos) : 9 ; // Iterate over all possible digits // at current position for ( int i = 0 ; i <= end; i++) { // Check if i is the maximum possible // digit at current position or not int ntight = (i < end) ? 1 : tight; // Check if a number contains // leading 0s or not int nzero = (i != 0 ) ? 1 : st; // If number has only leading zeros // and digit is non-zero if ((nzero == 1 ) && isPrime(i) && isPrime(prime)) { // Prime digits at prime positions res += cntNum(pos + 1 , nzero, ntight, prime + 1 ); } if ((nzero == 1 ) && !isPrime(i) && !isPrime(prime)) { // Non-prime digits at // non-prime positions res += cntNum(pos + 1 , nzero, ntight, prime + 1 ); } // If the number has only leading zeros // and i is zero, if (nzero == 0 ) res += cntNum(pos + 1 , nzero, ntight, prime); } return dp[pos][st][tight][prime] = res; } // Function to find count of numbers in // range [0, b] whose digits are prime // at prime and non-prime at non-prime pos static int cntZeroRange( int b) { num.clear(); // Insert digits of a number, b while (b > 0 ) { num.add(b % 10 ); b /= 10 ; } // Reversing the digits in num Collections.reverse(num); // Initializing dp with -1 for ( int i = 0 ; i < 19 ; i++) for ( int j = 0 ; j < 2 ; j++) for ( int k = 0 ; k < 2 ; k++) for ( int l = 0 ; l < 19 ; l++) dp[i][j][k][l] = - 1 ; int res = cntNum( 0 , 0 , 0 , 1 ); // Returning the value return res; } // Driver Code public static void main(String[] args) { // Given range, [L, R] int L = 5 , R = 22 ; // Function Call int res = cntZeroRange(R) - cntZeroRange(L - 1 ); // Print answer System.out.print(res + "\n" ); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program for the above approach from math import ceil, sqrt # Function to check if a # number is prime or not def isPrime(n): # If n is less than # or equal to 1 if (n < = 1 ): return False # If n is less than # or equal to 3 if (n < = 3 ): return True # If n is a multiple of 2 or 3 if (n % 2 = = 0 or n % 3 = = 0 ): return False # Iterate over the range [5, n] for i in range ( 5 , ceil(sqrt(n)), 6 ): # If n is a multiple of i or (i + 2) if (n % i = = 0 or n % (i + 2 ) = = 0 ): return False return True # Function to count the required # numbers from the given range def cntNum(pos, st, tight, prime): global dp, num if (pos = = len (num)): return 1 # If the subproblems already computed if (dp[pos][st][tight][prime] ! = - 1 ): return dp[pos][st][tight][prime] res = 0 # Stores maximum possible # at current digits end = num[pos] if (tight = = 0 ) else 9 # Iterate over all possible digits # at current position for i in range (end + 1 ): # Check if i is the maximum possible # digit at current position or not ntight = 1 if (i < end) else tight # Check if a number contains # leading 0s or not nzero = 1 if (i ! = 0 ) else st # If number has only leading zeros # and digit is non-zero if ((nzero = = 1 ) and isPrime(i) and isPrime(prime)): # Prime digits at prime positions res + = cntNum(pos + 1 , nzero, ntight, prime + 1 ) if ((nzero = = 1 ) and isPrime(i) = = False and isPrime(prime) = = False ): # Non-prime digits at # non-prime positions res + = cntNum(pos + 1 , nzero, ntight, prime + 1 ) # If the number has only leading zeros # and i is zero, if (nzero = = 0 ): res + = cntNum(pos + 1 , nzero, ntight, prime) dp[pos][st][tight][prime] = res return dp[pos][st][tight][prime] # Function to find count of numbers in # range [0, b] whose digits are prime # at prime and non-prime at non-prime pos def cntZeroRange(b): global num, dp num.clear() while (b > 0 ): num.append(b % 10 ) b / / = 10 # Reversing the digits in num num = num[:: - 1 ] # print(num) dp = [[[[ - 1 for i in range ( 19 )] for i in range ( 2 )] for i in range ( 2 )] for i in range ( 19 )] res = cntNum( 0 , 0 , 0 , 1 ) # Returning the value return res # Driver Code if __name__ = = '__main__' : dp = [[[[ - 1 for i in range ( 19 )] for i in range ( 2 )] for i in range ( 2 )] for i in range ( 19 )] L, R, num = 5 , 22 , [] # Function Call res = cntZeroRange(R) - cntZeroRange(L - 1 ) # Print answer print (res) # This code is contributed by mohit kumar 29 |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { // Store digits of a number static List< int > num = new List< int >(); // Store overlapping subproblems static int [, , , ] dp = new int [19, 2, 2, 19]; // Function to check if a // number is prime or not static bool isPrime( int n) { // If n is less than // or equal to 1 if (n <= 1) return false ; // If n is less than // or equal to 3 if (n <= 3) return true ; // If n is a multiple of 2 or 3 if (n % 2 == 0 || n % 3 == 0) return false ; // Iterate over the range [5, n] for ( int i = 5; i * i <= n; i = i + 6) { // If n is a multiple of i or (i + 2) if (n % i == 0 || n % (i + 2) == 0) return false ; } return true ; } // Function to count the required // numbers from the given range static int cntNum( int pos, int st, int tight, int prime) { // Base Case if (pos == num.Count) return 1; // If the subproblems already computed if (dp[pos, st, tight, prime] != -1) return dp[pos, st, tight, prime]; int res = 0; // Stores maximum possible // at current digits int end = (tight == 0) ? num[pos] : 9; // Iterate over all possible digits // at current position for ( int i = 0; i <= end; i++) { // Check if i is the maximum possible // digit at current position or not int ntight = (i < end) ? 1 : tight; // Check if a number contains // leading 0s or not int nzero = (i != 0) ? 1 : st; // If number has only leading zeros // and digit is non-zero if ((nzero == 1) && isPrime(i) && isPrime(prime)) { // Prime digits at prime positions res += cntNum(pos + 1, nzero, ntight, prime + 1); } if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) { // Non-prime digits at // non-prime positions res += cntNum(pos + 1, nzero, ntight, prime + 1); } // If the number has only leading zeros // and i is zero, if (nzero == 0) res += cntNum(pos + 1, nzero, ntight, prime); } return dp[pos, st, tight, prime] = res; } // Function to find count of numbers in // range [0, b] whose digits are prime // at prime and non-prime at non-prime pos static int cntZeroRange( int b) { num.Clear(); // Insert digits of a number, b while (b > 0) { num.Add(b % 10); b /= 10; } // Reversing the digits in num num.Reverse(); // Initializing dp with -1 for ( int i = 0; i < 19; i++) for ( int j = 0; j < 2; j++) for ( int k = 0; k < 2; k++) for ( int l = 0; l < 19; l++) dp[i, j, k, l] = -1; int res = cntNum(0, 0, 0, 1); // Returning the value return res; } // Driver Code public static void Main( string [] args) { // Given range, [L, R] int L = 5, R = 22; // Function Call int res = cntZeroRange(R) - cntZeroRange(L - 1); // Print answer Console.WriteLine(res + "\n" ); } } // This code is contributed by chitranayal. |
Javascript
<script> // JavaScript program for the above approach // Store digits of a number let num = []; // Store overlapping subproblems let dp = new Array(19); // Function to check if a // number is prime or not function isPrime(n) { // If n is less than // or equal to 1 if (n <= 1) return false ; // If n is less than // or equal to 3 if (n <= 3) return true ; // If n is a multiple of 2 or 3 if (n % 2 == 0 || n % 3 == 0) return false ; // Iterate over the range [5, n] for (let i = 5; i * i <= n; i = i + 6) { // If n is a multiple of i or (i + 2) if (n % i == 0 || n % (i + 2) == 0) return false ; } return true ; } // Function to count the required // numbers from the given range function cntNum(pos,st,tight,prime) { // Base Case if (pos == num.length) return 1; // If the subproblems already computed if (dp[pos][st][tight][prime] != -1) return dp[pos][st][tight][prime]; let res = 0; // Stores maximum possible // at current digits let end = (tight == 0) ? num[pos] : 9; // Iterate over all possible digits // at current position for (let i = 0; i <= end; i++) { // Check if i is the maximum possible // digit at current position or not let ntight = (i < end) ? 1 : tight; // Check if a number contains // leading 0s or not let nzero = (i != 0) ? 1 : st; // If number has only leading zeros // and digit is non-zero if ((nzero == 1) && isPrime(i) && isPrime(prime)) { // Prime digits at prime positions res += cntNum(pos + 1, nzero, ntight, prime + 1); } if ((nzero == 1) && !isPrime(i) && !isPrime(prime)) { // Non-prime digits at // non-prime positions res += cntNum(pos + 1, nzero, ntight, prime + 1); } // If the number has only leading zeros // and i is zero, if (nzero == 0) res += cntNum(pos + 1, nzero, ntight, prime); } return dp[pos][st][tight][prime] = res; } // Function to find count of numbers in // range [0, b] whose digits are prime // at prime and non-prime at non-prime pos function cntZeroRange(b) { num=[]; // Insert digits of a number, b while (b > 0) { num.push(b % 10); b = Math.floor(b/10); } // Reversing the digits in num num.reverse(); for (let i=0;i<19;i++) { dp[i]= new Array(2); for (let j=0;j<2;j++) { dp[i][j]= new Array(2); for (let k=0;k<2;k++) { dp[i][j][k]= new Array(19); for (let l=0;l<19;l++) { dp[i][j][k][l]=-1; } } } } let res = cntNum(0, 0, 0, 1); // Returning the value return res; } // Driver Code // Given range, [L, R] let L = 5, R = 22; // Function Call let res = cntZeroRange(R) - cntZeroRange(L - 1); // Print answer document.write(res + "<br>" ); // This code is contributed by avanitrachhadiya2155 </script> |
7
Time Complexity: O(log10(R) * log10(L) sqrt(log10(R))* 10 * 4))
Auxiliary Space: O(log10(R) * log10(L) * 4)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!