Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingFind minimum number of steps to reach the end of String

Find minimum number of steps to reach the end of String

Given a binary string str of length N and an integer K, the task is to find the minimum number of steps required to move from str[0] to str[N – 1] with the following moves: 

  1. From an index i, the only valid moves are i + 1, i + 2 and i + K
  2. An index i can only be visited if str[i] = ‘1’

Examples: 

Input: str = “101000011”, K = 5 
Output:
str[0] -> str[2] -> str[7] -> str[8]
Input: str = “1100000100111”, K = 6 
Output: -1 
There is no possible path.
Input: str = “10101010101111010101”, K = 4 
Output:

Approach: The idea is to use dynamic programming to solve the problem. 

  • It is given that for any index i, it is possible to move to an index i+1, i+2 or i+K.
  • One of the three possibilities will give the required result which is the minimum number of steps to reach the end.
  • Therefore, the dp[] array is created and is filled in a bottom-up manner.

Below is the implementation of the above approach: 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum number
// of steps to reach the end
int minSteps(string str, int n, int k)
{
 
    // If the end can't be reached
    if (str[n - 1] == '0')
        return -1;
 
    // Already at the end
    if (n == 1)
        return 0;
 
    // If the length is 2 or 3 then the end
    // can be reached in a single step
    if (n < 4)
        return 1;
 
    // For the other cases, solve the problem
    // using dynamic programming
    int dp[n];
 
    // It requires no move from the
    // end to reach the end
    dp[n - 1] = 0;
 
    // From the 2nd last and the 3rd last
    // index, only a single move is required
    dp[n - 2] = 1;
    dp[n - 3] = 1;
 
    // Update the answer for every index
    for (int i = n - 4; i >= 0; i--) {
 
        // If the current index is not reachable
        if (str[i] == '0')
            continue;
 
        // To store the minimum steps required
        // from the current index
        int steps = INT_MAX;
 
        // If it is a valid move then update
        // the minimum steps required
        if (i + k < n && str[i + k] == '1')
            steps = min(steps, dp[i + k]);
 
        if (str[i + 1] == '1')
            steps = min(steps, dp[i + 1]);
 
        if (str[i + 2] == '1')
            steps = min(steps, dp[i + 2]);
 
        // Update the minimum steps required starting
        // from the current index
        dp[i] = (steps == INT_MAX) ? steps : 1 + steps;
    }
 
    // Cannot reach the end starting from str[0]
    if (dp[0] == INT_MAX)
        return -1;
 
    // Return the minimum steps required
    return dp[0];
}
 
// Driver code
int main()
{
    string str = "101000011";
    int n = str.length();
    int k = 5;
 
    cout << minSteps(str, n, k);
 
    return 0;
}


Java




// Java implementation of the approach
class GFG
{
     
    final static int INT_MAX = Integer.MAX_VALUE ;
     
    // Function to return the minimum number
    // of steps to reach the end
    static int minSteps(String str, int n, int k)
    {
     
        // If the end can't be reached
        if (str.charAt(n - 1) == '0')
            return -1;
     
        // Already at the end
        if (n == 1)
            return 0;
     
        // If the length is 2 or 3 then the end
        // can be reached in a single step
        if (n < 4)
            return 1;
     
        // For the other cases, solve the problem
        // using dynamic programming
        int dp[] = new int[n];
     
        // It requires no move from the
        // end to reach the end
        dp[n - 1] = 0;
     
        // From the 2nd last and the 3rd last
        // index, only a single move is required
        dp[n - 2] = 1;
        dp[n - 3] = 1;
     
        // Update the answer for every index
        for (int i = n - 4; i >= 0; i--)
        {
     
            // If the current index is not reachable
            if (str.charAt(i) == '0')
                continue;
     
            // To store the minimum steps required
            // from the current index
            int steps =INT_MAX ;
     
            // If it is a valiINT_MAXd move then update
            // the minimum steps required
            if (i + k < n && str.charAt(i + k) == '1')
                steps = Math.min(steps, dp[i + k]);
     
            if (str.charAt(i + 1) == '1')
                steps = Math.min(steps, dp[i + 1]);
     
            if (str.charAt(i + 2) == '1')
                steps = Math.min(steps, dp[i + 2]);
     
            // Update the minimum steps required starting
            // from the current index
            dp[i] = (steps == INT_MAX) ? steps : 1 + steps;
        }
     
        // Cannot reach the end starting from str[0]
        if (dp[0] == INT_MAX)
            return -1;
     
        // Return the minimum steps required
        return dp[0];
    }
     
    // Driver code
    public static void main(String[] args)
    {
        String str = "101000011";
        int n = str.length();
        int k = 5;
     
        System.out.println(minSteps(str, n, k));
    }
}
 
// This code is contributed by AnkitRai01


Python3




# Python3 implementation of the approach
import sys
 
INT_MAX = sys.maxsize;
 
# Function to return the minimum number
# of steps to reach the end
def minSteps(string , n, k) :
     
    # If the end can't be reached
    if (string[n - 1] == '0') :
        return -1;
 
    # Already at the end
    if (n == 1) :
        return 0;
 
    # If the length is 2 or 3 then the end
    # can be reached in a single step
    if (n < 4) :
        return 1;
 
    # For the other cases, solve the problem
    # using dynamic programming
    dp = [0] * n;
 
    # It requires no move from the
    # end to reach the end
    dp[n - 1] = 0;
 
    # From the 2nd last and the 3rd last
    # index, only a single move is required
    dp[n - 2] = 1;
    dp[n - 3] = 1;
 
    # Update the answer for every index
    for i in range(n - 4, -1, -1) :
         
        # If the current index is not reachable
        if (string[i] == '0') :
            continue;
 
        # To store the minimum steps required
        # from the current index
        steps = INT_MAX;
 
        # If it is a valid move then update
        # the minimum steps required
        if (i + k < n and string[i + k] == '1') :
            steps = min(steps, dp[i + k]);
 
        if (string[i + 1] == '1') :
            steps = min(steps, dp[i + 1]);
 
        if (string[i + 2] == '1') :
            steps = min(steps, dp[i + 2]);
 
        # Update the minimum steps required starting
        # from the current index
        dp[i] = steps if (steps == INT_MAX) else (1 + steps);
     
    # Cannot reach the end starting from str[0]
    if (dp[0] == INT_MAX) :
        return -1;
 
    # Return the minimum steps required
    return dp[0];
 
# Driver code
if __name__ == "__main__" :
 
    string = "101000011";
    n = len(string);
    k = 5;
 
    print(minSteps(string, n, k));
 
# This code is contributed by AnkitRai01


C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    static int INT_MAX = int.MaxValue ;
     
    // Function to return the minimum number
    // of steps to reach the end
    static int minSteps(string str, int n, int k)
    {
     
        // If the end can't be reached
        if (str[n - 1] == '0')
            return -1;
     
        // Already at the end
        if (n == 1)
            return 0;
     
        // If the length is 2 or 3 then the end
        // can be reached in a single step
        if (n < 4)
            return 1;
     
        // For the other cases, solve the problem
        // using dynamic programming
        int []dp = new int[n];
     
        // It requires no move from the
        // end to reach the end
        dp[n - 1] = 0;
     
        // From the 2nd last and the 3rd last
        // index, only a single move is required
        dp[n - 2] = 1;
        dp[n - 3] = 1;
     
        // Update the answer for every index
        for (int i = n - 4; i >= 0; i--)
        {
     
            // If the current index is not reachable
            if (str[i] == '0')
                continue;
     
            // To store the minimum steps required
            // from the current index
            int steps = INT_MAX ;
     
            // If it is a valiINT_MAXd move then update
            // the minimum steps required
            if (i + k < n && str[i + k] == '1')
                steps = Math.Min(steps, dp[i + k]);
     
            if (str[i + 1] == '1')
                steps = Math.Min(steps, dp[i + 1]);
     
            if (str[i + 2] == '1')
                steps = Math.Min(steps, dp[i + 2]);
     
            // Update the minimum steps required starting
            // from the current index
            dp[i] = (steps == INT_MAX) ? steps : 1 + steps;
        }
     
        // Cannot reach the end starting from str[0]
        if (dp[0] == INT_MAX)
            return -1;
     
        // Return the minimum steps required
        return dp[0];
    }
     
    // Driver code
    public static void Main()
    {
        string str = "101000011";
        int n = str.Length;
        int k = 5;
     
        Console.WriteLine(minSteps(str, n, k));
    }
}
 
// This code is contributed by AnkitRai01


Javascript




<script>
  
// Javascript implementation of the approach
 
// Function to return the minimum number
// of steps to reach the end
function minSteps(str, n, k)
{
 
    // If the end can't be reached
    if (str[n - 1] == '0')
        return -1;
 
    // Already at the end
    if (n == 1)
        return 0;
 
    // If the length is 2 or 3 then the end
    // can be reached in a single step
    if (n < 4)
        return 1;
 
    // For the other cases, solve the problem
    // using dynamic programming
    var dp = Array(n);
 
    // It requires no move from the
    // end to reach the end
    dp[n - 1] = 0;
 
    // From the 2nd last and the 3rd last
    // index, only a single move is required
    dp[n - 2] = 1;
    dp[n - 3] = 1;
 
    // Update the answer for every index
    for (var i = n - 4; i >= 0; i--) {
 
        // If the current index is not reachable
        if (str[i] == '0')
            continue;
 
        // To store the minimum steps required
        // from the current index
        var steps = 1000000000;
 
        // If it is a valid move then update
        // the minimum steps required
        if (i + k < n && str[i + k] == '1')
            steps = Math.min(steps, dp[i + k]);
 
        if (str[i + 1] == '1')
            steps = Math.min(steps, dp[i + 1]);
 
        if (str[i + 2] == '1')
            steps = Math.min(steps, dp[i + 2]);
 
        // Update the minimum steps required starting
        // from the current index
        dp[i] = (steps == 1000000000) ? steps : 1 + steps;
    }
 
    // Cannot reach the end starting from str[0]
    if (dp[0] == 1000000000)
        return -1;
 
    // Return the minimum steps required
    return dp[0];
}
 
// Driver code
var str = "101000011";
var n = str.length;
var k = 5;
document.write( minSteps(str, n, k));
 
// This code is contributed by famously.
</script>


Output

3

Time Complexity: O(N) where N is the length of the string.
Auxiliary Space: O(N) as it is using extra space for array “dp”

Efficient approach: Space optimization

To optimize space, we can use a rolling array of size k instead of an array of size n to store the dynamic programming values. Since we only need to access values up to k positions ahead, we can reuse the same array to store values for the next iteration.

Implementation Steps:

  • Create a function minSteps and initialize all base cases.
  • Create a DP vector of size K.
  • Iterate the array and update the answer for every index
  • initialize a variable steps to store the minimum steps required from the current index.
  • Now If it is a valid move then update the minimum steps required and update the steps accordingly.
  • At last return minimum steps required if dp[0]  is not INT_MAX else return -1.

Implementation:

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum number
// of steps to reach the end
int minSteps(string str, int n, int k)
{
    // If the end can't be reached
    if (str[n - 1] == '0')
        return -1;
 
    // Already at the end
    if (n == 1)
        return 0;
 
    if (n < 4)
        return 1;
     
    // initialize dp of required size K
    int dp[k];
     
    // It requires no move from the
    // end to reach the end
    dp[k - 1] = 0;
    // From the 2nd last and the 3rd last
    // index, only a single move is required
    dp[k - 2] = 1;
    dp[k - 3] = 1;
     
    // Update the answer for every index
    for (int i = n - 4; i >= 0; i--) {
        if (str[i] == '0')
            continue;
         
        // To store the minimum steps required
        // from the current index
        int steps = INT_MAX;
         
        // If it is a valid move then update
        // the minimum steps required
        if (i + k < n && str[i + k] == '1')
            steps = min(steps, dp[(i + k) % k]);
 
        if (str[i + 1] == '1')
            steps = min(steps, dp[(i + 1) % k]);
 
        if (str[i + 2] == '1')
            steps = min(steps, dp[(i + 2) % k]);
         
        // Update the minimum steps required starting
        // from the current index
        dp[i % k] = (steps == INT_MAX) ? steps : 1 + steps;
    }
     
    // Cannot reach the end starting from str[0]
    if (dp[0] == INT_MAX)
        return -1;
    // Return the minimum steps required
    return dp[0];
}
 
// Driver code
int main()
{
    string str = "101000011";
    int n = str.length();
    int k = 5;
 
    cout << minSteps(str, n, k);
 
    return 0;
}


Java




import java.util.*;
 
class Main {
  public static void main(String[] args)
  {
    String str = "101000011";
    int n = str.length();
    int k = 5;
    System.out.println(minSteps(str, n, k));
  }
 
  // Function to return the minimum number
  // of steps to reach the end
  public static int minSteps(String str, int n, int k)
  {
    // If the end can't be reached
    if (str.charAt(n - 1) == '0')
      return -1;
 
    // Already at the end
    if (n == 1)
      return 0;
 
    if (n < 4)
      return 1;
 
    // initialize dp of required size K
    int[] dp = new int[k];
 
    // It requires no move from the
    // end to reach the end
    dp[k - 1] = 0;
    // From the 2nd last and the 3rd last
    // index, only a single move is required
    dp[k - 2] = 1;
    dp[k - 3] = 1;
 
    // Update the answer for every index
    for (int i = n - 4; i >= 0; i--) {
      if (str.charAt(i) == '0')
        continue;
 
      // To store the minimum steps required
      // from the current index
      int steps = Integer.MAX_VALUE;
 
      // If it is a valid move then update
      // the minimum steps required
      if (i + k < n && str.charAt(i + k) == '1')
        steps = Math.min(steps, dp[(i + k) % k]);
 
      if (str.charAt(i + 1) == '1')
        steps = Math.min(steps, dp[(i + 1) % k]);
 
      if (str.charAt(i + 2) == '1')
        steps = Math.min(steps, dp[(i + 2) % k]);
 
      // Update the minimum steps required starting
      // from the current index
      dp[i % k] = (steps == Integer.MAX_VALUE)
        ? steps
        : 1 + steps;
    }
 
    // Cannot reach the end starting from str[0]
    if (dp[0] == Integer.MAX_VALUE)
      return -1;
 
    // Return the minimum steps required
    return dp[0];
  }
}


Python3




import sys
 
# Function to return the minimum number of steps to reach the end
def minSteps(str, n, k):
    # If the end can't be reached
    if str[n - 1] == '0':
        return -1
 
    # Already at the end
    if n == 1:
        return 0
 
    if n < 4:
        return 1
     
    # initialize dp of required size K
    dp = [0] * k
     
    # It requires no move from the end to reach the end
    dp[k - 1] = 0
    # From the 2nd last and the 3rd last index, only a single move is required
    dp[k - 2] = 1
    dp[k - 3] = 1
     
    # Update the answer for every index
    for i in range(n - 4, -1, -1):
        if str[i] == '0':
            continue
         
        # To store the minimum steps required from the current index
        steps = sys.maxsize
         
        # If it is a valid move then update the minimum steps required
        if i + k < n and str[i + k] == '1':
            steps = min(steps, dp[(i + k) % k])
 
        if str[i + 1] == '1':
            steps = min(steps, dp[(i + 1) % k])
 
        if str[i + 2] == '1':
            steps = min(steps, dp[(i + 2) % k])
         
        # Update the minimum steps required starting from the current index
        dp[i % k] = (steps if steps == sys.maxsize else 1 + steps)
     
    # Cannot reach the end starting from str[0]
    if dp[0] == sys.maxsize:
        return -1
    # Return the minimum steps required
    return dp[0]
 
# Driver code
str = "101000011"
n = len(str)
k = 5
 
print(minSteps(str, n, k))


C#




// C# implementation of the approach
using System;
 
class GFG
{   
    // Function to return the minimum number
    // of steps to reach the end
    static int minSteps(string str, int n, int k)
    {
  // If the end can't be reached
    if (str[n - 1] == '0')
        return -1;
 
    // Already at the end
    if (n == 1)
        return 0;
 
    if (n < 4)
        return 1;
     
    // initialize dp of required size K
    int []dp=new int[k];
     
    // It requires no move from the
    // end to reach the end
    dp[k - 1] = 0;
    // From the 2nd last and the 3rd last
    // index, only a single move is required
    dp[k - 2] = 1;
    dp[k - 3] = 1;
     
    // Update the answer for every index
    for (int i = n - 4; i >= 0; i--) {
        if (str[i] == '0')
            continue;
         
        // To store the minimum steps required
        // from the current index
        int steps =int.MaxValue ;
         
        // If it is a valid move then update
        // the minimum steps required
        if (i + k < n && str[i + k] == '1')
            steps = Math.Min(steps, dp[(i + k) % k]);
 
        if (str[i + 1] == '1')
            steps = Math.Min(steps, dp[(i + 1) % k]);
 
        if (str[i + 2] == '1')
            steps = Math.Min(steps, dp[(i + 2) % k]);
     
        // Update the minimum steps required starting
        // from the current index
        dp[i % k] = (steps ==  int.MaxValue) ? steps : 1 + steps;
       }
     
    // Cannot reach the end starting from str[0]
    if (dp[0] == int.MaxValue)
        return -1;
    // Return the minimum steps required
    return dp[0];
    }
     
    // Driver code
    public static void Main()
    {
        string str = "101000011";
        int n = str.Length;
        int k = 5;
        Console.WriteLine(minSteps(str, n, k));
    }
}
 
// This code is contributed by panwar2001


Javascript




function minSteps(str, n, k) {
    // If the end can't be reached
    if (str[n - 1] == '0')
        return -1;
 
    // Already at the end
    if (n == 1)
        return 0;
 
    if (n < 4)
        return 1;
 
    // initialize dp of required size K
    let dp = new Array(k);
 
    // It requires no move from the
    // end to reach the end
    dp[k - 1] = 0;
    // From the 2nd last and the 3rd last
    // index, only a single move is required
    dp[k - 2] = 1;
    dp[k - 3] = 1;
 
    // Update the answer for every index
    for (let i = n - 4; i >= 0; i--) {
        if (str[i] == '0')
            continue;
 
        // To store the minimum steps required
        // from the current index
        let steps = Number.MAX_SAFE_INTEGER;
 
        // If it is a valid move then update
        // the minimum steps required
        if (i + k < n && str[i + k] == '1')
            steps = Math.min(steps, dp[(i + k) % k]);
 
        if (str[i + 1] == '1')
            steps = Math.min(steps, dp[(i + 1) % k]);
 
        if (str[i + 2] == '1')
            steps = Math.min(steps, dp[(i + 2) % k]);
 
        // Update the minimum steps required starting
        // from the current index
        dp[i % k] = (steps == Number.MAX_SAFE_INTEGER) ? steps : 1 + steps;
    }
 
    // Cannot reach the end starting from str[0]
    if (dp[0] == Number.MAX_SAFE_INTEGER)
        return -1;
    // Return the minimum steps required
    return dp[0];
}
 
// Driver code
let str = "101000011";
let n = str.length;
let k = 5;
 
console.log(minSteps(str, n, k));


Output

3

Time Complexity: O(N) where N is the length of the string.
Auxiliary Space: O(K) 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments