Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMaximum number of plates that can be placed from top to bottom...

Maximum number of plates that can be placed from top to bottom in increasing order of size

Given a 2D array plates[][] of size N, which each row representing the length and width of a N rectangular plates, the task is to find the maximum number of plates that can be placed on one another. 
Note: A plate can be put on another only if its length and width are strictly smaller than that plate.

Examples:

Input: Plates[][] = [ [3, 5], [6, 7], [7, 2], [2, 3] ] 
Output:
Explanation: Plates can be arranged in this manner [ 6, 7 ] => [ 3, 5 ] => [ 2, 3 ].

Input: Plates[][] = [ [6, 4], [ 5, 7 ], [1, 2], [ 3, 3 ], [ 7, 9 ] ] 
Output:
Explanation: Plates can be arranged in this manner [ 7, 9 ] => [ 5, 7 ] => [ 3, 3 ] => [ 1, 2 ].

 

Approach: The problem is a variation of the Longest increasing subsequence problem. The only difference is that in LIS, if i < j, then ith element will always come before the jth element. But here, choosing of plates doesn’t depend on index. So, to get this index restriction, sorting all the plates in decreasing order of area is required. 

If (i < j) and area of ith plate is also greater than jth plate, then ith plate will always come before(down) the jth plate.

Recursive approach:

Two possible choices exists for each plate, i.e. either to include it in the sequence or discard it. A plate can be included only when its length and width are smaller than the previous included plate.

Recursion tree for the array plates[][] = [ [6, 7], [3, 5], [7, 2] ] is as follows:

 Below is the implementation of the recursive approach: 

C++




// C++ Program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Comparator function to sort plates
// in decreasing order of area
bool comp(vector<int> v1,
          vector<int> v2)
{
    return v1[0] * v1[1] > v2[0] * v2[1];
}
 
// Recursive function to count and return
// the max number of plates that can be placed
int countPlates(vector<vector<int> >& plates,
                int lastLength, int lastWidth,
                int i, int n)
{
    // If no plate remains
    if (i == n)
        return 0;
 
    int taken = 0, notTaken = 0;
 
    // If length and width of previous plate
    // exceeds that of the current plate
    if (lastLength > plates[i][0]
        && lastWidth > plates[i][1]) {
 
        // Calculate including the plate
        taken = 1 + countPlates(plates, plates[i][0],
                                plates[i][1], i + 1, n);
 
        // Calculate excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
    }
 
    // Otherwise
    else
 
        // Calculate only excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
 
    return max(taken, notTaken);
}
 
// Driver code
int main()
{
    vector<vector<int> > plates = { { 6, 4 }, { 5, 7 },
                        { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.size();
 
    // Sorting plates in decreasing order of area
    sort(plates.begin(), plates.end(), comp);
    // Assuming first plate to be of maximum size
    int lastLength = INT_MAX;
    int lastWidth = INT_MAX;
 
   cout << countPlates(plates, lastLength,
                        lastWidth, 0, n);
    return 0;
}


Java




// Java program for the above approach
import java.lang.*;
import java.util.*;
 
class GFG{
 
// Recursive function to count and return
// the max number of plates that can be placed
static int countPlates(int[][] plates,
                       int lastLength,
                       int lastWidth,
                       int i, int n)
{
     
    // If no plate remains
    if (i == n)
        return 0;
 
    int taken = 0, notTaken = 0;
 
    // If length and width of previous plate
    // exceeds that of the current plate
    if (lastLength > plates[i][0] &&
        lastWidth > plates[i][1])
    {
         
        // Calculate including the plate
        taken = 1 + countPlates(plates, plates[i][0],
                                plates[i][1], i + 1, n);
 
        // Calculate excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
    }
 
    // Otherwise
    else
     
        // Calculate only excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
 
    return Math.max(taken, notTaken);
}
 
// Driver code
public static void main(String[] args)
{
    int[][] plates = { { 6, 4 }, { 5, 7 },
                       { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.length;
     
    // Sorting plates in decreasing order of area
    Arrays.sort(plates, (v1, v2)-> (v2[0] * v2[1]) -
                                   (v1[0] * v1[1]));
     
    // Assuming first plate to be of maximum size
    int lastLength = Integer.MAX_VALUE;
    int lastWidth = Integer.MAX_VALUE;
     
    System.out.println(countPlates(plates, lastLength,
                                   lastWidth, 0, n));
}
}
 
// This code is contributed by offbeat


Python3




from functools import reduce
from operator import  mul
 
# Recursive function to count and return
# the max number of plates that can be placed
def countPlates(plates, lastLength, lastWidth, i, n):
 
    # If no plates remains
    if i == n:
        return 0
    taken = 0
    not_taken = countPlates(plates, lastLength, lastWidth, i+1, n)
 
    # If length and width of previous plates
    # exceeds that of the current plate
    if lastLength > plates[i][0] and lastWidth > plates[i][1]:
        # Calculating including plate
        taken = 1 + countPlates(plates, plates[i][0], plates[i][1], i+1, n)
 
    # Otherwise
    else:
        # Calculate excluding the plate
        not_taken = countPlates(plates, lastLength, lastWidth, i+1, n)
 
    return max(taken, not_taken)
 
plates = [(6, 4), (5, 7), (1, 2), (3, 3), (7, 9)]
n = len(plates)
 
# Sorting plates in decreasing order of area
plates.sort(key= lambda tup: reduce(mul, tup), reverse=True)
 
lastlength = pow(10, 9)
lastwidth = pow(10, 9)
 
print(countPlates(plates, lastlength, lastwidth, 0, n))
 
# This code is contributed by sdeadityasharma.


C#




// C# code to implement the approach
 
using System;
using System.Linq;
 
class GFG {
    // Recursive function to count and return
    // the max number of plates that can be placed
    static int countPlates(int[][] plates, int lastLength,
                           int lastWidth, int i, int n)
    {
        // If no plate remains
        if (i == n)
            return 0;
 
        int taken = 0, notTaken = 0;
 
        // If length and width of previous plate
        // exceeds that of the current plate
        if (lastLength > plates[i][0]
            && lastWidth > plates[i][1]) {
            // Calculate including the plate
            taken = 1
                    + countPlates(plates, plates[i][0],
                                  plates[i][1], i + 1, n);
 
            // Calculate excluding the plate
            notTaken = countPlates(plates, lastLength,
                                   lastWidth, i + 1, n);
        }
 
        // Otherwise
        else
            // Calculate only excluding the plate
            notTaken = countPlates(plates, lastLength,
                                   lastWidth, i + 1, n);
 
        return Math.Max(taken, notTaken);
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        int[][] plates
            = { new int[] { 6, 4 }, new int[] { 5, 7 },
                new int[] { 1, 2 }, new int[] { 3, 3 },
                new int[] { 7, 9 } };
        int n = plates.Length;
 
        // Sorting plates in decreasing order of area
        Array.Sort(plates,
                   (v1, v2) => (v2[0] * v2[1]) - (v1[0] * v1[1]));
 
        // Assuming first plate to be of maximum size
        int lastLength = Int32.MaxValue;
        int lastWidth = Int32.MaxValue;
 
        Console.WriteLine(countPlates(plates, lastLength,
                                      lastWidth, 0, n));
    }
}
 
// This code is contributed by phasing17


Javascript




<script>
 
// Javascript Program for the above approach
 
// Recursive function to count and return
// the max number of plates that can be placed
function countPlates(plates, lastLength,
                     lastWidth, i, n)
{
     
    // If no plate remains
    if (i == n)
        return 0;
 
    var taken = 0, notTaken = 0;
 
    // If length and width of previous plate
    // exceeds that of the current plate
    if (lastLength > plates[i][0] &&
        lastWidth > plates[i][1])
    {
 
        // Calculate including the plate
        taken = 1 + countPlates(plates, plates[i][0],
                                plates[i][1], i + 1, n);
 
        // Calculate excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
    }
 
    // Otherwise
    else
 
        // Calculate only excluding the plate
        notTaken = countPlates(plates, lastLength,
                               lastWidth, i + 1, n);
 
    return Math.max(taken, notTaken);
}
 
// Driver code
var plates = [ [ 6, 4 ], [ 5, 7 ],
               [ 1, 2 ], [ 3, 3 ],
               [ 7, 9 ] ];
var n = plates.length;
 
// Sorting plates in decreasing order of area
plates.sort((v1, v2) => v2[0] * v2[1] - v1[0] * v1[1]);
 
// Assuming first plate to be of maximum size
var lastLength = 1000000000;
var lastWidth = 1000000000;
 
document.write(countPlates(plates, lastLength,
                           lastWidth, 0, n));
 
// This code is contributed by rutvik_56
 
</script>


Output: 

4

 

Time Complexity: O(2N
Auxiliary Space: O(N)

Dynamic Programming Approach: The above approach can be optimized using Dynamic programming as illustrated below.

Below is the implementation of the above approach:

C++




// C++ Program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Comparator function to sort plates
// in decreasing order of area
bool comp(vector<int> v1, vector<int> v2)
{
    return v1[0] * v1[1] > v2[0] * v2[1];
}
 
// Function to count and return the max
// number of plates that can be placed
int countPlates(vector<vector<int> >& plates, int n)
{
 
    // Stores the maximum
    // number of plates
    int maximum_plates = 1;
    vector<int> dp(n, 1);
 
    for (int i = 1; i < n; i++) {
        int cur = dp[i];
 
        // For each i-th plate, traverse
        // all the previous plates
        for (int j = i - 1; j >= 0; j--) {
 
            // If i-th plate is smaller than j-th plate
            if (plates[i][0] < plates[j][0]
                && plates[i][1] < plates[j][1]) {
 
                // Include the j-th plate only if current
                // count exceeds the previously stored count
                if (cur + dp[j] > dp[i]) {
 
                    dp[i] = cur + dp[j];
 
                    // Update the maximum count
                    maximum_plates = max(maximum_plates, dp[i]);
                }
            }
        }
    }
    return maximum_plates;
}
 
// Driver code
int main()
{
    vector<vector<int> > plates = { { 6, 4 }, { 5, 7 },
                        { 1, 2 }, { 3, 3 }, { 7, 9 } };
    int n = plates.size();
 
    // Sorting plates in decreasing order of area
    sort(plates.begin(), plates.end(), comp);
 
    cout << countPlates(plates, n);
 
    return 0;
}


Java




import java.util.*;
import java.io.*;
 
// Java program for the above approach
class GFG{
 
  // Function to count and return the max
  // number of plates that can be placed
  static int countPlates(ArrayList<plate> plates, int n)
  {
 
    // Stores the maximum
    // number of plates
    int maximum_plates = 1;
    ArrayList<Integer> dp = new ArrayList<Integer>();
 
    for(int i = 1 ; i <= n ; i++){
      dp.add(1);
    }
 
    for (int i = 1; i < n; i++) {
      int cur = dp.get(i);
 
      // For each i-th plate, traverse
      // all the previous plates
      for (int j = i - 1 ; j >= 0 ; j--){
 
        // If i-th plate is smaller than j-th plate
        if (plates.get(i).l < plates.get(j).l && plates.get(i).b < plates.get(j).b) {
 
          // Include the j-th plate only if current
          // count exceeds the previously stored count
          if (cur + dp.get(j) > dp.get(i)) {
 
            dp.set(i, cur + dp.get(j));
 
            // Update the maximum count
            maximum_plates = Math.max(maximum_plates, dp.get(i));
          }
        }
      }
    }
    return maximum_plates;
  }
 
  // Driver code
  public static void main(String args[])
  {
    ArrayList<plate> plates = new ArrayList<plate>(
      List.of(
        new plate( 6, 4 ),
        new plate( 5, 7 ),
        new plate( 1, 2 ),
        new plate( 3, 3 ),
        new plate( 7, 9 )
      )
    );
    int n = plates.size();
 
    // Sorting plates in decreasing order of area
    Collections.sort(plates, new comp());
 
    System.out.println(countPlates(plates, n));
  }
}
 
// Class for storing length and breadth of plate
class plate{
  int l, b;
  plate(int l,int b){
    this.l = l;
    this.b = b;
  }
}
 
class comp implements Comparator<plate>
{
 
    // Comparator function to sort plates
    // in decreasing order of area
    public int compare(plate o1, plate o2){
        int x1 = o1.l*o1.b;
        int x2 = o2.l*o2.b;
        return x2-x1;
    }
}
 
// This code is contributed by subhamgoyal2014.


Python3




# code
print("GFG")


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
using System.Linq;
 
class GFG
{
 
  // Function to count and return the max
  // number of plates that can be placed
  static int countPlates(List<plate> plates, int n)
  {
 
    // Stores the maximum
    // number of plates
    int maximum_plates = 1;
    List<int> dp = new List<int>();
 
    for (int i = 1; i <= n; i++)
    {
      dp.Add(1);
    }
 
    for (int i = 1; i < n; i++)
    {
      int cur = dp[i];
 
      // For each i-th plate, traverse
      // all the previous plates
      for (int j = i - 1; j >= 0; j--)
      {
        // If i-th plate is smaller than j-th plate
        if (plates[i].l < plates[j].l && plates[i].b < plates[j].b)
        {
          // Include the j-th plate only if current
          // count exceeds the previously stored count
          if (cur + dp[j] > dp[i])
          {
            dp[i] = cur + dp[j];
 
            // Update the maximum count
            maximum_plates = Math.Max(maximum_plates, dp[i]);
          }
        }
      }
    }
    return maximum_plates;
  }
 
  // Driver code
  public static void Main(string[] args)
  {
    List<plate> plates = new List<plate>
    {
      new plate(6, 4),
      new plate(5, 7),
      new plate(1, 2),
      new plate(3, 3),
      new plate(7, 9)
      };
    int n = plates.Count();
 
    // Sorting plates in decreasing order of area
    plates = plates.OrderByDescending(x => x.l * x.b).ToList();
 
    Console.WriteLine(countPlates(plates, n));
  }
}
 
// Class for storing length and breadth of plate
class plate
{
  public int l, b;
  public plate(int l, int b)
  {
    this.l = l;
    this.b = b;
  }
}
 
// This code is contributed by phasing17.


Javascript




<script>
 
// Javascript program for the above approach
 
// Function to count and return the max
// number of plates that can be placed
function countPlates(plates, n)
{
     
    // Stores the maximum
    // number of plates
    var maximum_plates = 1;
    var dp = Array(n).fill(1);
 
    for(var i = 1; i < n; i++)
    {
        var cur = dp[i];
 
        // For each i-th plate, traverse
        // all the previous plates
        for(var j = i - 1; j >= 0; j--)
        {
             
            // If i-th plate is smaller than j-th plate
            if (plates[i][0] < plates[j][0] &&
                plates[i][1] < plates[j][1])
            {
 
                // Include the j-th plate only if
                // current count exceeds the
                // previously stored count
                if (cur + dp[j] > dp[i])
                {
                    dp[i] = cur + dp[j];
 
                    // Update the maximum count
                    maximum_plates = Math.max(
                        maximum_plates, dp[i]);
                }
            }
        }
    }
    return maximum_plates;
}
 
// Driver code
var plates = [ [ 6, 4 ], [ 5, 7 ],
               [ 1, 2 ], [ 3, 3 ],
               [ 7, 9 ] ];
var n = plates.length;
 
// Sorting plates in decreasing order of area
plates.sort((v1, v2) => {
    return((v2[0] * v2[1]) - (v1[0] * v1[1]));
});
 
document.write(countPlates(plates, n));
 
// This code is contributed by noob2000
 
</script>


Output: 

4

 

Time Complexity: O(N2
Auxiliary Space: O(N)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments