Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingNumber from a range having Kth minimum cost of conversion to...

Number from a range [L, R] having Kth minimum cost of conversion to 1 by given operations

Given three integers L, R and K where [L, R] denotes the range of elements, the task is to find the element in the range [L, R] requiring Kth minimum cost of conversion to 1. If two or more elements have the same cost, then print the minimum among them. 

Cost of conversion of an element X to 1 using the given operations is the count of operations used: 

  1. If X is even, then convert X to X/2
  2. If X is odd, then convert X to 3*X + 1

Examples: 

Input: L = 12, R = 15, K = 2 
Output: 13 
Explanation: 
The cost associated with 12 is 9 (12 –> 6 –> 3 –> 10 –> 5 –> 16 –> 8 –> 4 –> 2 –> 1) 
The cost associated with 13 is 9 (13 –> 40 –> 20 –> 10 –> 5 –> 16 –> 8 –> 4 –> 2 –> 1) 
The cost associated with 14 is 17 (14 –> 7 –> 22 –> 11 –> 34 –> 17 –> 52 –> 26 –> 13 –> 40 –> 20 –> 10 –> 5 –> 16 –> 8 –> 4 –> 2 –> 1) 
The cost associated with 15 is 17 (15 –> 46–> 23 –> 70 –> 35 –> 106 –> 53 –> 160 –> 80 –> 40 –> 20 –> 10 –> 5 –> 16 –> 8 –> 4 –> 2 –> 1) 
The element sorted according to cost is [12, 13, 14, 15]. 
For K = 2, the output is 13.

Input: L = 1, R = 1, K = 1 
Output: 1

Naive Approach: The simplest approach is to calculate the cost associated with each element between L and R using recursion. Below are the steps: 

  1. Define a function func which calculates the cost recursively.
  2. Store all the cost of elements in an array of pairs.
  3. Sort the array of pairs according to their cost.
  4. Then return the element at (K-1)th index from the array.

Below is the implementation of the above approach:  

C++14




// C++14 implementation of
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
//Function to calculate the cost
int func(int n)
{
    int count = 0;
 
    // Base case
    if (n == 2 or n == 1)
        return 1;
 
    // Even condition
    if (n % 2 == 0)
        count = 1 + func(n / 2);
 
    // Odd condition
    if (n % 2 != 0)
        count = 1 + func(n * 3 + 1);
 
    // Return cost
    return count;
}
 
// Function to find Kth element
void findKthElement(int l, int r, int k)
{
    vector<int> arr;
 
    for(int i = l; i <= r; i++)
        arr.push_back(i);
 
    // Array to store the costs
    vector<vector<int>> result;
 
    for(int i : arr)
        result.push_back({i, func(i)});
 
    // Sort the array based on cost
    sort(result.begin(), result.end());
 
    cout << (result[k - 1][0]);
}
 
// Driver Code
int main()
{
     
    // Given range and6 K
    int l = 12;
    int r = 15;
    int k = 2;
     
    // Function call
    findKthElement(l, r, k);
     
    return 0;
}
 
// This code is contributed by mohit kumar 29


Java




// Java implementation of
// the above approach
import java.util.*;
 
class GFG{
 
// Function to calculate the cost
static int func(int n)
{
    int count = 0;
 
    // Base case
    if (n == 2 || n == 1)
        return 1;
 
    // Even condition
    if (n % 2 == 0)
        count = 1 + func(n / 2);
 
    // Odd condition
    if (n % 2 != 0)
        count = 1 + func(n * 3 + 1);
 
    // Return cost
    return count;
}
 
// Function to find Kth element
static void findKthElement(int l, int r, int k)
{
    ArrayList<Integer> arr = new ArrayList<>();
 
    for(int i = l; i <= r; i++)
        arr.add(i);
 
    // Array to store the costs
    ArrayList<List<Integer>> result = new ArrayList<>();
 
    for(int i : arr)
        result.add(Arrays.asList(i, func(i)));
 
    // Sort the array based on cost
    Collections.sort(result, (s1, s2) -> s1.get(1) -
                                         s2.get(1));
 
    System.out.println(result.get(k - 1).get(0));
}
 
// Driver code
public static void main (String[] args)
{
     
    // Given range and6 K
    int l = 12;
    int r = 15;
    int k = 2;
     
    // Function call
    findKthElement(l, r, k);
}
}
 
// This code is contributed by offbeat


Python3




# Python3 implementation of
# the above approach
 
# Function to calculate the cost
def func(n):
    count = 0
     
    # Base case
    if n == 2 or n == 1:
        return 1
     
    # Even condition
    if n % 2 == 0:  
        count = 1 + func(n//2)
 
    # Odd condition
    if n % 2 != 0
        count = 1 + func(n * 3 + 1)
 
    # Return cost 
    return count
 
# Function to find Kth element
def findKthElement(l, r, k):
    arr = list(range(l, r + 1))
 
    # Array to store the costs
    result = []
    for i in arr:
        result.append([i, func(i)])
 
    # Sort the array based on cost
    result.sort()
    print(result[k-1][0])
 
# Driver Code
 
# Given range and K
l = 12
r = 15
k = 2
 
# Function Call
findKthElement(l, r, k)


C#




// C# implementation of
// the above approach
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG{
 
// Function to calculate the cost
static int func(int n)
{
    int count = 0;
     
    // Base case
    if (n == 2 || n == 1)
        return 1;
 
    // Even condition
    if (n % 2 == 0)
        count = 1 + func(n / 2);
 
    // Odd condition
    if (n % 2 != 0)
        count = 1 + func(n * 3 + 1);
 
    // Return cost
    return count;
}
 
// Function to find Kth element
static void findKthElement(int l, int r, int k)
{
    List<int> arr = new List<int>();
 
    for(int i = l; i <= r; i++)
        arr.Add(i);
 
    // Array to store the costs
    Dictionary<int,
               int> result = new Dictionary<int,
                                            int>();
    foreach(int i in arr)
    {
        result.Add(i, func(i));
    }
     
    // Sort the array based on cost
    var myList = result.ToList();
     
    myList.Sort((pair1, pair2) => pair1.Value.CompareTo(
        pair2.Value));
 
    Console.WriteLine(myList[1].Key);
}
 
// Driver code
public static void Main(String[] args)
{
     
    // Given range and6 K
    int l = 12;
    int r = 15;
    int k = 2;
     
    // Function call
    findKthElement(l, r, k);
}
}
 
// This code is contributed by aashish1995


Javascript




<script>
 
// JavaScript implementation of
// the above approach
 
//Function to calculate the cost
function func(n)
{
    var count = 0;
 
    // Base case
    if (n == 2 || n == 1)
        return 1;
 
    // Even condition
    if (n % 2 == 0)
        count = 1 + func(n / 2);
 
    // Odd condition
    if (n % 2 != 0)
        count = 1 + func(n * 3 + 1);
 
    // Return cost
    return count;
}
 
// Function to find Kth element
function findKthElement( l, r, k)
{
    var arr = [];
 
    for(var i = l; i <= r; i++)
        arr.push(i);
 
    // Array to store the costs
    var result = [];
 
    arr.forEach(i => {
         
        result.push([i, func(i)]);
    });
 
    // Sort the array based on cost
    result.sort();
 
    document.write( result[k - 1][0]);
}
 
// Driver Code
// Given range and6 K
var l = 12;
var r = 15;
var k = 2;
 
// Function call
findKthElement(l, r, k);
 
 
</script>


Output: 

13

 

Time Complexity: O(2N
Auxiliary Space: O(1)

Efficient approach: The above approach can be optimized by using Dynamic Programming. Below are the steps:

  • To avoid recalculating the overlapping subproblems, initialize a dp[] array to store the minimum cost to reach 1 from for every encountered subproblem.
  • The recurrence relation to update the dp[] table is :

dp[n] = 1 + func(n / 2) for even elements 
dp[n] = 1 + func(3 * n + 1) for odd elements 

  • Store all the calculated costs in an array of pairs
  • Sort the array of pairs according to their cost.
  • Then return the element at (K – 1)th index from the array.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the cost
int func(int n, int dp[])
{
    int count = 0;
 
    // Base case
    if (n == 2 || n == 1)
        return 1;
 
    if (dp[n] != -1)
        return dp[n];
 
    // Even condition
    if (n % 2 == 0)
        count = 1 + func(n / 2, dp);
 
    // Odd condition
    if (n % 2 != 0)
        count = 1 + func(n * 3 + 1, dp);
 
    // Store the result
    dp[n] = count;
    return dp[n];
}
 
// Function to find Kth element
void findKthElement(int l, int r, int k)
{
 
    // Array to store the results
    vector<pair<int, int> > result;
 
    // Define DP array
    int dp[r + 1] = {0};
    dp[1] = 1;
    dp[2] = 1;
 
    for(int i = l; i <= r; i++)
        result.push_back({i, func(i, dp)});
 
    // Sort the array based on cost
    sort(result.begin(), result.end());
     
    cout << (result[k - 1].first);
}
 
// Driver code
int main()
{
     
    // Given range and K
    int l = 12;
    int r = 15;
    int k = 2;
 
    // Function call
    findKthElement(l, r, k);
}
 
// This code is contributed by grand_master


Java




// Java implementation of
// the above approach
import java.util.*;
class GFG{
     
static class Pair implements Comparable<Pair>
{
  int start,end;
   
  Pair(int s, int e)
  {
    start = s;
    end = e;
  }
 
  public int compareTo(Pair p)
  {
    return this.start - p.start;
  }
}
 
// Function to calculate
// the cost
static int func(int n,
                int dp[])
{
  int count = 0;
 
  // Base case
  if (n == 2 ||
      n == 1)
    return 1;
 
  if (dp[n] != -1)
    return dp[n];
 
  // Even condition
  if (n % 2 == 0)
    count = 1 + func(n / 2, dp);
 
  // Odd condition
  if (n % 2 != 0)
    count = 1 + func(n * 3 +
                     1, dp);
 
  // Store the result
  dp[n] = count;
  return dp[n];
}
 
// Function to find Kth element
static void findKthElement(int l,
                           int r,
                           int k)
{
  // Array to store the
  // results
  Vector<Pair> result =
         new Vector<>();
 
  // Define DP array
  int []dp = new int[r + 1];
  dp[1] = 1;
  dp[2] = 1;
 
  for(int i = l; i <= r; i++)
    result.add(new Pair(i,
               func(i, dp)));
 
  // Sort the array based
  // on cost
  Collections.sort(result);
 
  System.out.print(
  result.get(k - 1).start);
}
 
// Driver code
public static void main(String[] args)
{   
  // Given range and K
  int l = 12;
  int r = 15;
  int k = 2;
 
  // Function call
  findKthElement(l, r, k);
}
}
 
// This code is contributed by gauravrajput1


Python3




# Python3 implementation of the above approach
# Function to calculate the cost
def func(n, dp):
    count = 0
 
    # Base case
    if n == 2 or n == 1:
        return 1
    if n in dp:
      return dp[n] 
 
    # Even condition
    if n % 2 == 0
        count = 1 + func(n//2, dp)
 
    # Odd condition
    if n % 2 != 0:  
        count = 1 + func(n * 3 + 1, dp)
 
    # Store the result
    dp[n]= count
    return dp[n]
 
# Function to find Kth element
def findKthElement(l, r, k):
    arr = list(range(l, r + 1))
 
    # Array to store the results
    result = []
 
    # Define DP array
    dp ={1:1, 2:1}
 
    for i in arr:
        result.append([i, func(i, dp)])
 
    # Sort the array based on cost
    result.sort()
    print(result[k-1][0])
 
# Given range and K
l = 12
r = 15
k = 2
 
# Function Call
findKthElement(l, r, k)


C#




// C# implementation of
// the above approach
using System;
using System.Collections;
 
class GFG{
     
class Pair
{
   public int start,end;
    
  public Pair(int s, int e)
  {
    start = s;
    end = e;
  }
}
 
class sortHelper : IComparer
{
   int IComparer.Compare(object a, object b)
   {
      Pair first=(Pair)a;
      Pair second=(Pair)b;
         
      return first.start - second.start;
   }
}
      
  
// Function to calculate
// the cost
static int func(int n, int []dp)
{
  int count = 0;
  
  // Base case
  if (n == 2 || n == 1)
    return 1;
  
  if (dp[n] != -1)
    return dp[n];
  
  // Even condition
  if (n % 2 == 0)
    count = 1 + func(n / 2, dp);
  
  // Odd condition
  if (n % 2 != 0)
    count = 1 + func(n * 3 +
                     1, dp);
  
  // Store the result
  dp[n] = count;
  return dp[n];
}
  
// Function to find Kth element
static void findKthElement(int l,
                           int r,
                           int k)
{
  // Array to store the
  // results
  ArrayList result =
         new ArrayList();
  
  // Define DP array
  int []dp = new int[r + 1];
  dp[1] = 1;
  dp[2] = 1;
  
  for(int i = l; i <= r; i++)
    result.Add(new Pair(i,
               func(i, dp)));
  
  // Sort the array based
  // on cost
  result.Sort(new sortHelper());
  
  Console.Write(((Pair)result[k - 1]).start);
}
  
// Driver code
public static void Main(string[] args)
{   
  // Given range and K
  int l = 12;
  int r = 15;
  int k = 2;
  
  // Function call
  findKthElement(l, r, k);
}
}
 
// This code is contributed by rutvik_56


Javascript




<script>
// Javascript implementation of
// the above approach
 
// Function to calculate
// the cost
function func(n,dp)
{
    let count = 0;
  
  // Base case
  if (n == 2 ||
      n == 1)
    return 1;
  
  if (dp[n] != -1)
    return dp[n];
  
  // Even condition
  if (n % 2 == 0)
    count = 1 + func(Math.floor(n / 2), dp);
  
  // Odd condition
  if (n % 2 != 0)
    count = 1 + func(n * 3 +
                     1, dp);
  
  // Store the result
  dp[n] = count;
  return dp[n];
}
 
// Function to find Kth element
function findKthElement(l,r,k)
{
    // Array to store the
  // results
  let result = [];
          
  
  // Define DP array
  let dp = new Array(r + 1);
  dp[1] = 1;
  dp[2] = 1;
  
  for(let i = l; i <= r; i++)
    result.push([i,
               func(i, dp)]);
  
  // Sort the array based
  // on cost
  result.sort(function(a,b){return a[0]-b[0];});
  
  document.write(
  result[k-1][0]);
}
 
// Driver code
// Given range and K
let l = 12;
let r = 15;
let k = 2;
 
// Function call
findKthElement(l, r, k);
 
// This code is contributed by patel2127
</script>


Output: 

13

 

Time Complexity: O(N*M) 
Auxiliary Space: O(N)
 

Efficient approach: Using DP Tabulation method ( Iterative approach )

The approach to solve this problem is same but DP tabulation(bottom-up) method is better then Dp + memoization(top-down) because memoization method needs extra stack space of recursion calls.

Steps to solve this problem :

  • Create a vector DP to store the solution of the subproblems and initialize it with 0.
  • Initialize the dp with base cases and compute for even and odd conditions.
  • Now Iterate over subproblems to get the value of current problem form previous computation of subproblems stored in DP.
  • Return the final solution.

Implementation :

C++




// C++ program for above apprach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the cost
void func(int n, vector<int>& dp)
{
    dp[1] = 1;
    dp[2] = 1;
 
    for(int i = 3; i <= n; i++) {
        // Even condition
        if (i % 2 == 0)
            dp[i] = 1 + dp[i / 2];
        // Odd condition
        else
            dp[i] = 1 + dp[i * 3 + 1];
    }
}
 
// Function to find Kth element
void findKthElement(int l, int r, int k)
{
    // Define DP array
    vector<int> dp(r + 1, 0);
    func(r, dp);
 
    // Array to store the results
    vector<pair<int, int> > result;
    for(int i = l; i <= r; i++)
        result.push_back({i, dp[i]});
 
    // Sort the array based on cost
    sort(result.begin(), result.end());
 
    cout << result[k - 1].first;
}
 
// Driver code
int main()
{
    // Given range and K
    int l = 12;
    int r = 15;
    int k = 2;
 
    // Function call
    findKthElement(l, r, k);
}
// this code is contributed by bhardwajji


Java




import java.util.*;
 
class GFG {
    // Function to calculate the cost
    static int[] func(int n) {
        int[] dp = new int[n + 1];
 
        // Base case
        dp[1] = 1;
 
        // Iterate for all elements
        for (int i = 2; i <= n; i++) {
            dp[i] = 1 + dp[i - 1];
 
            // If even then divide by 2
            if (i % 2 == 0) {
                dp[i] = Math.min(dp[i], 1 + dp[i / 2]);
            }
            // If odd then divide by 2 and add 1
            else {
                dp[i] = Math.min(dp[i], 2 + dp[(i + 1) / 2]);
            }
        }
 
        return dp;
    }
 
    public static void main(String[] args) {
        int l = 12;
        int r = 15;
        int k = 2;
 
        // Function call
        int[] dp = func(r);
 
        // Create list of tuples with indices and costs
        List<int[]> lst = new ArrayList<>();
        for (int i = l; i <= r; i++) {
            lst.add(new int[]{i, dp[i]});
        }
 
        // Sort the list based on cost
        lst.sort(Comparator.comparingInt(a -> a[1]));
 
        // Print k-th element index
        System.out.println(lst.get(k - 1)[0]);
    }
}


Python3




# Python program for above apprach
 
def func(n):
    dp = [0] * (n + 1)
 
    # Base case
    dp[1] = 1
 
    # Iterate for all elements
    for i in range(2, n + 1):
        dp[i] = 1 + dp[i - 1]
 
        # If even then divide by 2
        if i % 2 == 0:
            dp[i] = min(dp[i], 1 + dp[i // 2])
 
        # If odd then divide by 2 and add 1
        else:
            dp[i] = min(dp[i], 2 + dp[(i + 1) // 2])
 
    return dp
 
# Driver code
if __name__ == '__main__':
    l, r, k = 12, 15, 2
 
    # Function call
    dp = func(r)
 
    # Create list of tuples with indices and costs
    lst = [(i, dp[i]) for i in range(l, r+1)]
 
    # Sort the list based on cost
    lst.sort(key=lambda x: x[1])
 
    # Print k-th element index
    print(lst[k-1][0])


Javascript




function func(n) {
  let dp = Array(n+1).fill(0);
 
  // Base case
  dp[1] = 1;
 
  // Iterate for all elements
  for (let i = 2; i <= n; i++) {
    dp[i] = 1 + dp[i-1];
 
    // If even then divide by 2
    if (i % 2 === 0) {
      dp[i] = Math.min(dp[i], 1 + dp[i/2]);
    }
 
    // If odd then divide by 2 and add 1
    else {
      dp[i] = Math.min(dp[i], 2 + dp[(i+1)/2]);
    }
  }
 
  return dp;
}
 
// Driver code
let l = 12, r = 15, k = 2;
 
// Function call
let dp = func(r);
 
// Create list of tuples with indices and costs
let lst = Array.from({length: r-l+1}, (_, i) => [i+l, dp[i+l]]);
 
// Sort the list based on cost
lst.sort((a, b) => a[1] - b[1]);
 
// Print k-th element index
console.log(lst[k-1][0]);


C#




using System;
using System.Collections.Generic;
 
class Program {
    static int[] Func(int n) {
        int[] dp = new int[n + 1];
 
        // Base case
        dp[1] = 1;
 
        // Iterate for all elements
        for (int i = 2; i <= n; i++) {
            dp[i] = 1 + dp[i - 1];
 
            // If even then divide by 2
            if (i % 2 == 0) {
                dp[i] = Math.Min(dp[i], 1 + dp[i / 2]);
            }
 
            // If odd then divide by 2 and add 1
            else {
                dp[i] = Math.Min(dp[i], 2 + dp[(i + 1) / 2]);
            }
        }
 
        return dp;
    }
 
    static void FindKthElement(int l, int r, int k) {
        int[] dp = Func(r);
 
        // Create list of tuples with indices and costs
        List<(int, int)> lst = new List<(int, int)>();
        for (int i = l; i <= r; i++) {
            lst.Add((i, dp[i]));
        }
 
        // Sort the list based on cost
        lst.Sort((x, y) => x.Item2.CompareTo(y.Item2));
 
        // Print k-th element index
        Console.WriteLine(lst[k - 1].Item1);
    }
 
    static void Main(string[] args) {
        int l = 12;
        int r = 15;
        int k = 2;
 
        // Function call
        FindKthElement(l, r, k);
    }
}


Output

13

Time Complexity: O(r log r),  The time complexity of the findKthElement function is O(r log r)
Auxiliary Space:  O(r),  since it creates a DP array of size r+1

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments