Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingFind all pairwise sum possible using elements at opposite ends with minimum...

Find all pairwise sum possible using elements at opposite ends with minimum replacements

Given an array arr[] of even length N and an integer K denoting the range of numbers in the array i.e. the numbers in the array are in the range [1, K]. The task is to find all opposite indices pair sums possible with minimum replacements where in any replacement any number of the array can be changed to any other number in the range [1, K]. 

Note: Two indices i and j are said to be opposite if the distance of i from start and distance of j from the end are equal and i is in the first half of the array and j in the last half of the array.

Examples:

Input: arr[] = {1, 2, 4, 3}, K = 4
Output: 4 6
Explanation: Initially the pair sum is 1+3 = 4 and 2+4 = 6 which is not equal.
Replace 4 with 2 in one step (minimum moves) and it will give two pairs having sum 4.
Or change the 1 to 3 in one step, that will give two pairs having sum 6.
So there are two possible values of equal sum of all pairs, 4 and 6, in minimum moves.

Input: arr[] = {1, 2, 4, 6, 5, 3}, K = 6
Output: 7
Explanation: The three different pair sums are 4, 7, and 10.
Change 3 to 6 and 6 to 3. and this will give all the pair sum as 7 with minimum changes.
Notice here pair sum cannot be made 4 as {4, 6} itself will require 2 .
So total changes will not be minimum.
And also pair sum cannot be made 10 as then 3 should be changed to 9 or 1 to 7.
Both the values lies outside the range [1, 6]. 

 

Approach: This problem is based on the sweeping algorithm. For every pair find the max and min value that it can take and create segments so that minimum operations can be achieved. Find the most overlapping segments and also mark the total sum in the segments. In this way, the minimum sum values that make equal pairs can be found.

Below is the implementation of the above approach.

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find the possible values
void findValues(vector<int> arr, int K)
{
  int N = arr.size();
  int range[(K * 2) + 2] = { 0 };
  for (int i = 0; i < N / 2; i++) {
    int mini = min(arr[i], arr[N - 1 - i]) + 1;
 
    int maxi = max(arr[i], arr[N - 1 - i]) + K;
 
    int total = arr[i] + arr[N - 1 - i];
 
    // Using the sweeping the algorithm
    // Increment the array
    range[mini]--;
    range[maxi + 1]++;
    range[total]--;
    range[total + 1]++;
  }
 
  int count = N;
  int mini = INT_MAX;
  int value = 0;
  for (int i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    mini = min(mini, count);
  }
  count = N;
  for (int i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    if (count == mini) {
      cout << i << " ";
    }
  }
}
 
// Driver code
int main()
{
 
  vector<int> arr = { 1, 2, 4, 3 };
  int K = 4;
  findValues(arr, K);
  return 0;
}
 
// This code is contributed by Potta Lokesh


Java




// Java code to implement above approach
import java.io.*;
import java.util.*;
 
class GFG {
    // Function to find the possible values
    public static void findValues(int arr[],
                                  int K)
    {
        int N = arr.length;
        int range[] = new int[K * 2 + 2];
        for (int i = 0; i < N / 2; ++i) {
            int min
                = Math.min(arr[i],
                           arr[N - 1 - i])
                  + 1;
 
            int max
                = Math.max(arr[i],
                           arr[N - 1 - i])
                  + K;
 
            int total = arr[i]
                        + arr[N - 1 - i];
 
            // Using the sweeping the algorithm
            // Increment the array
            range[min]--;
            range[max + 1]++;
            range[total]--;
            range[total + 1]++;
        }
 
        int count = N;
        int min = Integer.MAX_VALUE;
        int value = 0;
        for (int i = 2; i < K * 2 + 1;
             ++i) {
            count += range[i];
            min = Integer.min(min, count);
        }
        count = N;
        for (int i = 2; i < K * 2 + 1;
             ++i) {
            count += range[i];
            if (count == min) {
                System.out.print(i + " ");
            }
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int arr[] = { 1, 2, 4, 3 };
        int K = 4;
        findValues(arr, K);
    }
}


Python3




# Python program for the above approach
import sys
 
# Function to find the possible values
def findValues(arr, K):
 
    N = len(arr)
    ranges = [0] * ((K * 2) + 2)
 
    for i in range(0, N // 2):
        mini = min(arr[i], arr[N - 1 - i]) + 1
 
        maxi = max(arr[i], arr[N - 1 - i]) + K
        total = arr[i] + arr[N - 1 - i]
 
        # Using the sweeping the algorithm
        # Increment the array
        ranges[mini] = ranges[mini] - 1
        ranges[maxi + 1] = ranges[maxi + 1] + 1
        ranges[total] = ranges[total] - 1
        ranges[total + 1] = ranges[total + 1] + 1
 
    count = N
    mini = sys.maxsize
    value = 0
    for i in range(2, K*2+1):
        count = count + ranges[i]
        mini = min(mini, count)
 
    count = N
    for i in range(2, K*2+1):
        count = count + ranges[i]
        if (count == mini):
            print(i, end=" ")
 
# Driver code
 
arr = [1, 2, 4, 3]
K = 4
findValues(arr, K)
 
 
# This code is contributed by Taranpreet


C#




using System;
 
public class GFG{
 
  // Function to find the possible values
  public static void findValues(int[] arr,
                                int K)
  {
    int N = arr.Length;
    int[] range = new int[K * 2 + 2];
    for (int i = 0; i < N / 2; ++i) {
      int min
        = Math.Min(arr[i],
                   arr[N - 1 - i])
        + 1;
 
      int max
        = Math.Max(arr[i],
                   arr[N - 1 - i])
        + K;
 
      int total = arr[i]
        + arr[N - 1 - i];
 
      // Using the sweeping the algorithm
      // Increment the array
      range[min]--;
      range[max + 1]++;
      range[total]--;
      range[total + 1]++;
    }
 
    int count = N;
    int mn = Int32.MaxValue;
 
    for (int i = 2; i < K * 2 + 1;
         ++i) {
      count += range[i];
      mn = Math.Min(mn, count);
    }
    count = N;
    for (int i = 2; i < K * 2 + 1;
         ++i) {
      count += range[i];
      if (count == mn) {
        Console.Write(i + " ");
      }
    }
  }
 
  // Driver code
  static public void Main (){
 
    int[] arr = { 1, 2, 4, 3 };
    int K = 4;
    findValues(arr, K);
  }
}
 
// This code is contributed by hrithikgarg03188.


Javascript




<script>
// Function to find the possible values
function findValues(arr, K)
{
  let N = arr.length;
  let range = [];
  for(let i = 0; i < (K * 2) + 1; i++) {
      range[i] = 0;
  }
  for (let i = 0; i < N / 2; i++) {
    let mini = Math.min(arr[i], arr[N - 1 - i]) + 1;
 
    let maxi = Math.max(arr[i], arr[N - 1 - i]) + K;
 
    let total = arr[i] + arr[N - 1 - i];
 
    // Using the sweeping the algorithm
    // Increment the array
    range[mini]--;
    range[maxi + 1]++;
    range[total]--;
    range[total + 1]++;
  }
 
  let count = N;
  let mini = Number.MAX_SAFE_INTEGER;
  let value = 0;
  for (let i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    mini = Math.min(mini, count);
  }
  count = N;
  for (let i = 2; i < (K * 2) + 1; i++) {
    count += range[i];
    if (count == mini) {
      document.write(i + " ");
    }
  }
}
 
// Driver code
let arr = [ 1, 2, 4, 3 ];
let K = 4;
findValues(arr, K);
 
// This code is contributed by Samim Hossain Mondal.
</scripty


Output

4 6 

 
 

 

Time Complexity: O(K)
Auxiliary Space: O(K)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments