Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimize steps to obtain N from M by adding M/X in each...

Minimize steps to obtain N from M by adding M/X in each step

Given an integer N, the task is to find the minimum number of steps to obtain N from M (M = 1 initially). In each step, M/X can be added to M where X is any positive integer. 

Examples:

Input: N = 5
Output: 3
Explanation: Initially the number is 1. 1/1 is added to make it 2.
In next step adding 2/1 = 2 it becomes 4. At last add 4/4 = 1 to get the 5. 
This is the minimum steps required to convert 1 to 5

Input: N = 7
Output: 4
Explanation: Initially the number is 1. 
Now 1/1 is added to it and it becomes 2. 
After adding 2/1 = 2 it becomes 4. In the third 4/2 = 2 is added and it becomes 6.
At the final step add 6/6 = 1 and it becomes 7.

 

Approach: The approach of this question is using Dynamic Programming. For each integer, there are many possible moves. Store the minimum steps required to reach every number in the dp[] array and use this for the next numbers. Follow the steps mentioned below.

  • Start iterating from 2 to N.
  • For each number i, do the following:
    • Check from which numbers (less than i), we can reach i.
    • Now for those numbers find the minimum steps required to reach i by using the relation dp[i] = min(dp[i], dp[j]+1) where j is such a number from where i can be reached.
    • Store that minimum value in dp[i] array.
  • After iteration is done for all elements up to N return value of dp[N].

Below is the implementation of the above approach: 

C++




// C++ code to implement above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the minimum steps required
int minSteps(int N)
{
  vector<int> dp(N + 1, INT_MAX);
  dp[1] = 0;
 
  // Loop to find the minimum steps to
  // reach N from 1
  for (int i = 2; i <= N; ++i) {
    for (int j = 1; j <= i; ++j) {
 
      // Finding the distance
      // between two numbers
      int distance = i - j;
      if (distance == 0) {
        continue;
      }
 
      // Divide the number
      int divide = j / distance;
      if (divide != 0) {
 
        // Checking if the number
        // can be reached or not
        if (j / divide == distance) {
          dp[i] = min(dp[j] + 1, dp[i]);
        }
      }
    }
  }
  return dp[N];
}
 
// Driver code
int main()
{
  int N = 7;
 
  int ans = minSteps(N);
  cout << (ans);
 
  return 0;
}
 
// This code is contributed by rakeshsahni


Java




// Java code to implement above approach
import java.io.*;
import java.util.*;
 
class GFG {
 
    // Function to find the minimum steps required
    static int minSteps(int N)
    {
        int dp[] = new int[N + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
        dp[1] = 0;
 
        // Loop to find the minimum steps to
        // reach N from 1
        for (int i = 2; i <= N; ++i) {
            for (int j = 1; j <= i; ++j) {
 
                // Finding the distance
                // between two numbers
                int distance = i - j;
                if (distance == 0) {
                    continue;
                }
 
                // Divide the number
                int divide = j / distance;
                if (divide != 0) {
 
                    // Checking if the number
                    // can be reached or not
                    if (j / divide == distance) {
                        dp[i]
                            = Math.min(dp[j] + 1,
                                       dp[i]);
                    }
                }
            }
        }
        return dp[N];
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int N = 7;
 
        int ans = minSteps(N);
        System.out.println(ans);
    }
}


Python




# Python] code to implement above approach
import sys
 
# Function to find the minimum steps required
def minSteps(N):
     
  dp = []
  dp = [sys.maxsize for i in range(N + 1)]
  dp[1] = 0;
 
  # Loop to find the minimum steps to
  # reach N from 1
  for i in range(2, N + 1):
    for j in range(1, i + 1):
 
      # Finding the distance
      # between two numbers
      distance = i - j
      if (distance == 0):
        continue
 
      # Divide the number
      divide = j // distance;
      if (divide != 0):
 
        # Checking if the number
        # can be reached or not
        if (j // divide == distance):
          dp[i] = min(dp[j] + 1, dp[i])
           
  return dp[N]
 
# Driver code
 
N = 7
 
ans = minSteps(N);
print(ans)
 
# This code is contributed by Samim Hossain Mondal.


C#




// C# program for the above approach
using System;
 
public class GFG{
   
    // Function to find the minimum steps required
    static int minSteps(int N)
    {
        int[] dp = new int[N + 1];
          for(int i = 0; i < N + 1; i++)
            dp[i] = Int32.MaxValue;
       
        dp[1] = 0;
 
        // Loop to find the minimum steps to
        // reach N from 1
        for (int i = 2; i <= N; ++i) {
            for (int j = 1; j <= i; ++j) {
 
                // Finding the distance
                // between two numbers
                int distance = i - j;
                if (distance == 0) {
                    continue;
                }
 
                // Divide the number
                int divide = j / distance;
                if (divide != 0) {
 
                    // Checking if the number
                    // can be reached or not
                    if (j / divide == distance) {
                        dp[i]
                            = Math.Min(dp[j] + 1,
                                       dp[i]);
                    }
                }
            }
        }
        return dp[N];
    }
 
    // Driver code
    static public void Main (){
 
        int N = 7;
 
        int ans = minSteps(N);
        Console.Write(ans);
    }
}
 
// This code is contributed by hrithikgarg03188.


Javascript




<script>
// JavaScript code for the above approach
 
// Function to find the minimum steps required
function minSteps( N)
{
  let dp = new Array(N + 1).fill(Number.MAX_VALUE);
  dp[1] = 0;
 
  // Loop to find the minimum steps to
  // reach N from 1
  for (let i = 2; i <= N; ++i) {
    for (let j = 1; j <= i; ++j) {
 
      // Finding the distance
      // between two numbers
      let distance = i - j;
      if (distance == 0) {
        continue;
      }
 
      // Divide the number
      let divide =Math.floor(j / distance);
      if (divide != 0) {
 
        // Checking if the number
        // can be reached or not
        if (j / divide == distance) {
          dp[i] = Math.min(dp[j] + 1, dp[i]);
        }
      }
    }
  }
  return dp[N];
}
 
// Driver code
  let N = 7;
 
  let ans = minSteps(N);
  document.write((ans));
 
// This code is contributed by Potta Lokesh
    </script>


 
 

Output

4

 

Time Complexity: O(N*N)
Auxiliary Space: O(N)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments