Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum powers of P and Q to represent N

Minimum powers of P and Q to represent N

Given integer N and values P and Q, The task is to calculate the minimum number of powers of P and Q required to generate N.

Note: The 0th power of the values is also considered.

Examples:

Input: N = 15, P = 2, Q = 3
Output: 3
Explanation: We can make 15 by using (8, 4, 3) or (9, 3, 3). Both take 3 numbers.

Input: N = 19, P = 4, Q = 3
Output: 2
Explanation: In the second case, we can make 19 by using (16, 3) which is 2 numbers.

Approach: Recursion (Memoization)

The Basic idea is to use memoization approach for this problem, simply we’ll check ways to reach or to generate N by considering both  P and Q powers by making recursive calls.

Pseudo Code: 

To check the powers being used in recursive relation.

‘long long int a=1; 
ans = 1e9;   // to store potential answer
  
if(power = 1){ 
    return n;
}                
while(n-a >= 0)
{
    ans = min(ans, dp[n-a]);
    a = a*power;
}
  
return ans+1;

Follow the steps mentioned below to implement the idea:

  • Initialize a dp[] array of size N+1 and initialize it with 1e9.
  • Set, the base cases, dp[0] = 0 and dp[1] = 1.
  • Traverse through 2 to N and find the ways with powers.
    •  Way1 by considering the power of P.
    •  Way2 by considering the power of Q.
  • Consider dp[i] = min(way1, way2).
  • After traversing return dp[N].  

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check minimum steps for
// a particular power for n
int check(int n, int power, vector<int>& dp)
{
    // Initialize the variables
    long long int a = 1;
    int ans = 1e9;
 
    // Edge Case
    if (power == 1)
        return n;
 
    // Until N hits 0
    while (n - a >= 0) {
        ans = min(ans, dp[n - a]);
        a = a * power;
    }
 
    return ans + 1;
}
 
// Function to find minimum number
// of steps
int moves(int n, int p, int q)
{
    // Initialize a dp array
    vector<int> dp(n + 1, 1e9);
 
    // Base Case
    dp[0] = 0;
    dp[1] = 1;
 
    for (int i = 2; i <= n; ++i) {
        int way1 = check(i, p, dp);
        int way2 = check(i, q, dp);
        dp[i] = min(way1, way2);
    }
 
    // Return dp[] as answer
    return dp[n];
}
 
// Driver Code
int main()
{
    int N = 15, P = 2, Q = 3;
 
    // Function call
    cout << moves(N, P, Q) << endl;
    return 0;
}


Java




// Java code to implement the approach
import java.util.*;
public class GFG {
 
  // Function to check minimum steps for
  // a particular power for n
  public static int check(int n, int power, int dp[])
  {
     
    // Initialize the variables
    long a = 1;
    int ans = Integer.MAX_VALUE;
 
    // Edge Case
    if (power == 1)
      return n;
 
    // Until N hits 0
    while (n - a >= 0) {
      ans = Math.min(ans, dp[n - (int)a]);
      a = a * power;
    }
 
    return ans + 1;
  }
 
  // Function to find minimum number
  // of steps
  public static int moves(int n, int p, int q)
  {
    // Initialize a dp array
    int dp[] = new int[n + 1];
    for (int i = 0; i < n + 1; i++) {
      dp[i] = Integer.MAX_VALUE;
    }
 
    // Base Case
    dp[0] = 0;
    dp[1] = 1;
 
    for (int i = 2; i <= n; ++i) {
      int way1 = check(i, p, dp);
      int way2 = check(i, q, dp);
      dp[i] = Math.min(way1, way2);
    }
 
    // Return dp[] as answer
    return dp[n];
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int N = 15, P = 2, Q = 3;
 
    // Function call
    System.out.println(moves(N, P, Q));
  }
}
 
// This code is contributed by Samim Hossain Mondal.


Python3




# Python code to implement the approach
 
# Function to check minimum steps for a particular power of n
def check(n, power, dp):
    # Initialize the variables
    a = 1
    ans = float("inf")
 
    # Edge case
    if(power == 1):
        return n
 
    # Until N hits 0
    while(n-a >= 0):
        ans = min(ans, dp[n-a])
        a = a * power
 
    return ans + 1
 
 
# Function to find minimum number of steps
def moves(n, p, q):
   
    # Initialize a dp array
    dp = [float("inf")]*(n+1)
 
    # Base case
    dp[0] = 0
    dp[1] = 1
 
    for i in range(2, n+1):
        way1 = check(i, p, dp)
        way2 = check(i, q, dp)
        dp[i] = min(way1, way2)
 
    # Return dp[] as answer
    return dp[n]
 
 
N, P, Q = 15, 2, 3
# Function Call
print(moves(N, P, Q))
 
# This code is contributed by lokeshmvs21.


C#




// C# code to implement the approach
using System;
using System.Collections.Generic;
 
class GFG {
 
    // Function to check minimum steps for
    // a particular power for n
    public static int check(int n, int power, int[] dp)
    {
 
        // Initialize the variables
        long a = 1;
        int ans = int.MaxValue;
 
        // Edge Case
        if (power == 1)
            return n;
 
        // Until N hits 0
        while (n - a >= 0) {
            ans = Math.Min(ans, dp[n - (int)a]);
            a = a * power;
        }
 
        return ans + 1;
    }
 
    // Function to find minimum number
    // of steps
    public static int moves(int n, int p, int q)
    {
        // Initialize a dp array
        int[] dp = new int[n + 1];
        for (int i = 0; i < n + 1; i++) {
            dp[i] = int.MaxValue;
        }
 
        // Base Case
        dp[0] = 0;
        dp[1] = 1;
 
        for (int i = 2; i <= n; ++i) {
            int way1 = check(i, p, dp);
            int way2 = check(i, q, dp);
            dp[i] = Math.Min(way1, way2);
        }
 
        // Return dp[] as answer
        return dp[n];
    }
 
    // Driver Code
    public static void Main(String[] args)
    {
        int N = 15, P = 2, Q = 3;
 
        // Function call
        Console.WriteLine(moves(N, P, Q));
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)


Javascript




// Javascript code to implement the approach
 
// Function to check minimum steps for a particular power of n
function check(n, power, dp) {
    // Initialize the variables
    var a = 1;
    var ans = Number.MAX_VALUE;
 
    // Edge case
    if (power == 1) {
        return n;
    }
 
    // Until N hits 0
    while (n - a >= 0) {
        ans = Math.min(ans, dp[n - a]);
        a = a * power;
    }
 
    return ans + 1;
}
 
 
// Function to find minimum number of steps
function moves(n, p, q) {
 
    // Initialize a dp array
    var dp = new Array(n + 1).fill(Number.MAX_VALUE);
 
    // Base case
    dp[0] = 0;
    dp[1] = 1;
 
    for (var i = 2; i <= n; i++) {
        var way1 = check(i, p, dp);
        var way2 = check(i, q, dp);
        dp[i] = Math.min(way1, way2);
    }
 
    // Return dp[] as answer
    return dp[n];
}
 
 
var N = 15, P = 2, Q = 3;
// Function Call
console.log(moves(N, P, Q));
 
// This code is contributed by Tapesh(tapeshdua420)


Output

3

Time Complexity: O(N * log N)
Auxiliary Space:  O(N )

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments