Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingCount of non-consecutive Ones in Binary range

Count of non-consecutive Ones in Binary range

Given two positive integers ‘L’ and ‘R‘, the task is to return the number of the integers in the range [L, R] inclusive, whose binary representations do not contain consecutive ones where 0 ≤ l ≤ r ≤ 10^9

Examples:

Input: L = 0, R = 3
Output: 3
Explanation: The 3 numbers are 0(00), 1(01), 2(10) 3(11) is not included as its binary representation contains consecutive ones

Input: L = 5, R = 10
Output: 4
Explanation: The 4 numbers are 5(101), 8(1000), 9(1001), 10(1010)

Solving problem using Digit Dynamic Programming:

If we say G(x) tells the number of such integers between 0 to x (inclusively) without consecutive 1’s in their binary representation, then the number of such integers between L and R can be given by G(R) – G(L-1). This is when Digit DP (Dynamic Programming) comes into action. All such integer counting problems that satisfy the above property can be solved by the digit DP approach.

Intuition:

If we use the Digit DP approach to build all the binary String from the [ 0, R ] range and [0, L-1] range. then return Numbers in [0, R] range – Numbers in [0, L-1] range. So, we have only 2 digits to form the binary number i.e. 1 and 0.

Steps to solve the above approach:

  • The algorithm iterates through each digit position of the binary representation of 10^9 i.e. it’s 32-bit long.
  • It keeps track of the previous digit, whether it’s 0, 1, or an initial state
  • It considers a “tight” flag that determines the upper bound of the current digit based on the previous digits and the given range.
  • It recursively calculates the count of valid integers by considering all possible digits at each position, excluding combinations with consecutive 1s.
  • The algorithm sums up the counts from all recursive calls and memoizes the result for future use.
  • Finally, the algorithm returns the count of valid integers within the given range by subtracting the count of valid integers from the [L, R] range inclusively.

Below is the implementation of the above approach:

C++




// Cpp code for the above approach:
#include <iostream>
#include <cstring>
#include <bitset>
using namespace std;
 
// Function to solve the digit DP problem
long long solve(string str, int idx, int prev, int tight, long long dp[33][3][2]);
 
// Function to compute the count of non-negative integers
// with no consecutive ones in their binary representation
long long digitDP(string str)
{
    long long dp[33][3][2]; // 3D dynamic programming array
    memset(dp, -1, sizeof(dp)); // Initialize all elements to -1
    return solve(str, 0, 2, 1, dp); // Solve the problem using dynamic programming
}
 
// Recursive function to solve the digit DP problem
long long solve(string str, int idx, int prev, int tight, long long dp[33][3][2])
{
    // Base case: If we have reached the end of the string, return 1
    if (idx >= str.length()) {
        return 1LL;
    }
 
    // If the result for the current state is already computed, return it
    if (dp[idx][prev][tight] != -1) {
        return dp[idx][prev][tight];
    }
 
    long long ans = 0;
    int upperBound = (tight == 1 ? str[idx] - '0' : 1); // Determine the upper bound for the current digit based on the "tight" flag
 
    // Iterate through all possible digits from 0 to the upper bound
    for (int dgt = 0; dgt <= upperBound; dgt++) {
        int newTight = (tight == 0 ? 0 : (dgt == upperBound ? 1 : 0)); // Determine the new "tight" flag based on the current digit and the upper bound
 
        // If the previous digit and the current digit are both 1, skip this combination
        if (prev == 1 && dgt == 1) {
            continue;
        }
 
        // Recursively solve for the next digit
        ans += solve(str, idx + 1, dgt, newTight, dp);
    }
 
    // Memoize the result and return it
    return dp[idx][prev][tight] = ans;
}
 
// Function to compute the count of non-negative integers
// with no consecutive ones in their binary representation
long long findIntegers(int l, int r)
{
    if (l == 0) {
        return digitDP(bitset<32>(r).to_string());
    }
 
    l--;
    return digitDP(bitset<32>(r).to_string()) - digitDP(bitset<32>(l).to_string());
}
 
// Driver code
int main()
{
    // Example usage
    cout << findIntegers(0, 3) << endl;
    cout << findIntegers(5, 10) << endl;
    cout << findIntegers(10, 1000000000) << endl;
 
    return 0;
}


Java




// Java code for the above approach:
import java.util.*;
 
class GFG {
    public static long findIntegers(int l, int r)
    {
 
        // Convert the given integer to
        // its binary representation
        if (l == 0) {
            return digitDP(Integer.toBinaryString(r));
        }
 
        l--;
        return digitDP(Integer.toBinaryString(r))
            - digitDP(Integer.toBinaryString(l));
    }
 
    public static long digitDP(String str)
    {
 
        // Create a 3D dynamic programming
        // array
        long[][][] dp = new long[33][3][2];
 
        // Initialize all elements of
        // the array to -1
        for (long[][] ar : dp) {
            for (long[] e : ar) {
                Arrays.fill(e, -1);
            }
        }
 
        // Solve the problem using
        // dynamic programming
        return solve(str, 0, 2, 1, dp);
    }
 
    public static long solve(String str, int idx, int prev,
                             int tight, long[][][] dp)
    {
 
        // Base case: If we have reached
        // the end of the string, return 1
        if (idx >= str.length()) {
            return 1L;
        }
 
        // If the result for the current
        // state is already computed,
        // return it
        if (dp[idx][prev][tight] != -1) {
            return dp[idx][prev][tight];
        }
 
        long ans = 0;
 
        // Determine the upper bound for
        // the current digit based on
        // the "tight" flag
        int upperBound
            = (tight == 1 ? str.charAt(idx) - '0' : 1);
 
        // Iterate through all possible
        // digits from 0 to the upper bound
        for (int dgt = 0; dgt <= upperBound; dgt++) {
 
            // Determine the new "tight"
            // flag based on the current
            // digit and the upper bound
            int newTight
                = (tight == 0
                       ? 0
                       : (dgt == upperBound ? 1 : 0));
 
            // If the previous digit and
            // the current digit are both 1,
            // skip this combination
            if (prev == 1 && dgt == 1) {
                continue;
            }
 
            // Recursively solve for
            // the next digit
            ans += solve(str, idx + 1, dgt, newTight, dp);
        }
 
        // Memoize the result and return it
        return dp[idx][prev][tight] = ans;
    }
 
    // Drivers code
    public static void main(String args[])
    {
        System.out.println(findIntegers(0, 3));
        System.out.println(findIntegers(5, 10));
        System.out.println(findIntegers(10, 1000000000));
    }
}


Python3




# Python3 code to solve the above problem
# Function to solve the digit DP problem
def solve(str, idx, prev, tight, dp):
    # Base case: If we have reached the end of the string, return 1
    if idx >= len(str):
        return 1
 
    # If the result for the current state is already computed, return it
    if dp[idx][prev][tight] != -1:
        return dp[idx][prev][tight]
 
    ans = 0
    upperBound = int(str[idx]) if tight == 1 else 1 # Determine the upper bound for the current digit based on the "tight" flag
 
    # Iterate through all possible digits from 0 to the upper bound
    for dgt in range(upperBound + 1):
        newTight = 0 if (tight == 0) else ( 1 if dgt == upperBound else 0 ) # Determine the new "tight" flag based on the current digit and the upper bound
 
        # If the previous digit and the current digit are both 1, skip this combination
        if prev == 1 and dgt == 1:
            continue
 
        # Recursively solve for the next digit
        ans += solve(str, idx + 1, dgt, newTight, dp)
 
    # Memoize the result and return it
    dp[idx][prev][tight] = ans
    return ans
 
# Function to compute the count of non-negative integers
# with no consecutive ones in their binary representation
def findIntegers(l, r):
    if l == 0:
        return solve(bin(r)[2:], 0, 2, 1, [[[-1 for _ in range(2)] for _ in range(3)] for _ in range(32)])
 
    l -= 1
    return solve(bin(r)[2:], 0, 2, 1, [[[-1 for _ in range(2)] for _ in range(3)] for _ in range(32)]) - solve(bin(l)[2:], 0, 2, 1, [[[-1 for _ in range(2)] for _ in range(3)] for _ in range(32)])
 
# Example usage
print(findIntegers(0, 3))
print(findIntegers(5, 10))
print(findIntegers(10, 1000000000))
 
# This code is contributed by Tapesh(tapeshdua420)


C#




// C# code for the above approach
using System;
 
public class GFG {
    public static long FindIntegers(int l, int r)
    {
        // Convert the given integer to its binary
        // representation
        if (l == 0) {
            return DigitDP(Convert.ToString(r, 2));
        }
 
        l--;
        return DigitDP(Convert.ToString(r, 2))
            - DigitDP(Convert.ToString(l, 2));
    }
 
    public static long DigitDP(string str)
    {
        // Create a 3D dynamic programming array
        long[, , ] dp = new long[33, 3, 2];
 
        // Initialize all elements of the array to -1
        for (int i = 0; i < 33; i++) {
            for (int j = 0; j < 3; j++) {
                for (int k = 0; k < 2; k++) {
                    dp[i, j, k] = -1;
                }
            }
        }
 
        // Solve the problem using dynamic programming
        return Solve(str, 0, 2, 1, dp);
    }
 
    public static long Solve(string str, int idx, int prev,
                             int tight, long[, , ] dp)
    {
        // Base case: If we have reached the end of the
        // string, return 1
        if (idx >= str.Length) {
            return 1L;
        }
 
        // If the result for the current state is already
        // computed, return it
        if (dp[idx, prev, tight] != -1) {
            return dp[idx, prev, tight];
        }
 
        long ans = 0;
 
        // Determine the upper bound for the current digit
        // based on the "tight" flag
        int upperBound
            = (tight == 1) ? (str[idx] - '0') : 1;
 
        // Iterate through all possible digits from 0 to the
        // upper bound
        for (int dgt = 0; dgt <= upperBound; dgt++) {
            // Determine the new "tight" flag based on the
            // current digit and the upper bound
            int newTight
                = (tight == 0)
                      ? 0
                      : ((dgt == upperBound) ? 1 : 0);
 
            // If the previous digit and the current digit
            // are both 1, skip this combination
            if (prev == 1 && dgt == 1) {
                continue;
            }
 
            // Recursively solve for the next digit
            ans += Solve(str, idx + 1, dgt, newTight, dp);
        }
 
        // Memoize the result and return it
        dp[idx, prev, tight] = ans;
        return ans;
    }
 
    // Driver code
    public static void Main(string[] args)
    {
        Console.WriteLine(FindIntegers(0, 3));
        Console.WriteLine(FindIntegers(5, 10));
        Console.WriteLine(FindIntegers(10, 1000000000));
    }
}
 
// This code is contributed by Susobhan Akhuli


Javascript




//JavaScript implementation of the above approach
// Function to solve the digit DP problem
function solve(str, idx, prev, tight, dp) {
    // Base case: If we have reached the end of the string, return 1
    if (idx >= str.length) {
        return 1;
    }
 
    // If the result for the current state is already computed, return it
    if (dp[idx][prev][tight] !== -1) {
        return dp[idx][prev][tight];
    }
 
    let ans = 0;
    let upperBound = tight === 1 ? parseInt(str[idx]) : 1; // Determine the upper bound for the current digit based on the "tight" flag
 
    // Iterate through all possible digits from 0 to the upper bound
    for (let dgt = 0; dgt <= upperBound; dgt++) {
        let newTight = tight === 0 ? 0 : (dgt === upperBound ? 1 : 0); // Determine the new "tight" flag based on the current digit and the upper bound
 
        // If the previous digit and the current digit are both 1, skip this combination
        if (prev === 1 && dgt === 1) {
            continue;
        }
 
        // Recursively solve for the next digit
        ans += solve(str, idx + 1, dgt, newTight, dp);
    }
 
    // Memoize the result and return it
    dp[idx][prev][tight] = ans;
    return ans;
}
 
// Function to compute the count of non-negative integers
// with no consecutive ones in their binary representation
function findIntegers(l, r) {
    if (l === 0) {
        return solve((r).toString(2), 0, 2, 1, Array.from({length: 32}, () => Array.from({length: 3}, () => Array.from({length: 2}, () => -1))));
    }
 
    l -= 1;
    return solve((r).toString(2), 0, 2, 1, Array.from({length: 32}, () => Array.from({length: 3}, () => Array.from({length: 2}, () => -1)))) - solve((l).toString(2), 0, 2, 1, Array.from({length: 32}, () => Array.from({length: 3}, () => Array.from({length: 2}, () => -1))));
}
 
// Example usage
console.log(findIntegers(0, 3));
console.log(findIntegers(5, 10));
console.log(findIntegers(10, 1000000000));
 
// This code is contributed by Sakshi


Output

3
4
2178302







Time Complexity: O(2*idx*prev*tight)
Auxiliary Space: O(idx * prev* tight)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments