Saturday, January 11, 2025
Google search engine
HomeLanguagesDynamic ProgrammingMinimum time for manufacturing products with varying machines

Minimum time for manufacturing products with varying machines

Given a 2D integer array, machines[][], where each machine[i] represents [Mi, Ms], where Mi is the time required for the machine to produce its first product, and Ms is the increment in time for each additional product. In other words, the ith machine can finish producing the x’th product in Mi * Ms^{ ( x – 1) } seconds. Also, provided is an integer (changeTime), the time required to switch between machines. The task is to determine the minimum time required to manufacture the total number of products(totalProduct).

For example, if Mi = 3 and Ms = 2, then the machine would finish its 1st product in 3 seconds ( 3*21-1 ), its 2nd product in 3 * 2 = 6 seconds ( 3*22-1 ), its 3rd product in 3 * 4 = 12 seconds ( 3*23-1 ), and so on.

Examples:

Input: machines = [[3, 100], [5, 2]], changeTime = 1, totalProduct = 3
Output: 11
Explanation: Product 1: Start with Machine 0 and finish one Product in 3 seconds.
Product 2: Change Machine to a new Machine 0 for 1 second and then finish the second Product in another 3 seconds.
Product 3: Change the Machine to a new Machine 0 for 1 second and then finish the third Product in another 3 seconds.
Total time = 3 + 1 + 3 + 1 + 3 = 11 seconds.
The minimum time to complete the Manufacturing is 11 seconds.

Input: machines = [[2, 3], [3, 4]], changeTime = 5, totalProduct = 4
Output: 21
Explanation: Product 1: Start with Machine 0 and finish a Product in 2 seconds.
Product 2: Continue with Machine 0 and finish the next Product in 2 * 3 = 6 seconds.
Product 3: Change Machine to a new Machine 0 for 5 seconds and then finish next Product in another 2 seconds.
Product 4: Continue with Machine 0 and finish the next Product in 2 * 3 = 6 seconds.
Total time = 2 + 6 + 5 + 2 + 6 = 21 seconds.
The minimum time to complete the Manufacturing is 21 seconds.

Input: machines = [[1, 10], [2, 2], [3, 4]], changeTime = 6, totalProduct = 5
Output: 25
Explanation: Product 1: Start with Machine 1 and finish a Product in 2 seconds.
Product 2: Continue with Machine 1 and finish the next Product in 2 * 2 = 4 seconds.
Product 3: Change Machine to a new Machine 1 for 6 seconds and then finish next Product in another 2 seconds.
Product 4: Continue with Machine 1 and finish the next Product in 2 * 2 = 4 seconds.
Product 5: Change Machine to new Machine 0 for 6 seconds then finish next Product in another 1 second.
Total time = 2 + 4 + 6 + 2 + 4 + 6 + 1 = 25 seconds.
The minimum time to complete the Manufacturing is 25 seconds.

Approach: To solve the problem follow the below idea:

The given problem can be solved using dynamic programming. We can maintain an array dp, where dp[i] represents the minimum time required to finish the i-th product. We can update dp[i] for each machine by considering the time required to finish the i-th product using that machine and the minimum time required to finish the (i-1)-th product. After updating dp[i] for all machines, we can update dp[i] again by considering the time required to change the machine optimally.

Tabulation:

  • Precompute a table, DP[i], which stores the minimum time to complete ith product without change of machine. Now the problem becomes: when should we change machine to new one to minimize the total time?
  • We just need to know how many products we can manufacture before first change, j, and solve the remaining subproblem, which is stored in, dp[i – j].
  • Once we select our machine (outer for each loop), we try to keep it for the remaining product (inner for loop). After each product with the same machine, we try to change to a new one and continue the race for the remaining product (recursive call). We’ll bubble up the minimum from each recursive call. The minimum of minimums will be the answer.
  • dp[i] = min( f[i] # no machine change, min(f[j] + change_time + dp[i – j], for j < i) # change after the j first products )

Steps that were to follow the above approach:

  • Initialize a vector dp of size numProduct + 1 with 1e9 (a very large value).
  • Iterate over each machine in the given vector machine.
  • For each machine, initialize lapTime and totTime to the first element of that machine.
  • For i from 1 to numProduct, update dp[i] with the minimum of dp[i] and totTime.
  • Multiply lapTime by the second element of the machine for each iteration of i, and add it to totTime.
  • If totTime exceeds 1e9, break out of the loop.
  • Iterate over i from 2 to numProduct.
  • Iterate over j from 1 to i – 1.
  • Update dp[i] with the minimum of dp[i], dp[j] + changeTime + dp[i-j].
  • Return dp[numProduct] as the minimum time required to finish all the products.

Below is the implementation for the above approach: 

C++




// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum time
int minimumFinishTime(vector<vector<int> >& machine,
                      int changeTime, int numProduct)
{
    vector<int> dp(numProduct + 1, 1e9);
    for (auto& t : machine) {
 
        // Lapse time for each machine.
        long long lapTime = t[0];
 
        // Total time currently.
        long long totTime = t[0];
        for (int i = 1; i <= numProduct; i++) {
 
            // Comparing total time
            // currently and current
            // minimum at this index
            // of dp.
            dp[i] = min(dp[i], (int)totTime);
 
            // ProductTime multiplying by
            // Ms each time totTime adding
            // up each time by ProductTime.
            if ((totTime += (lapTime *= t[1])) > 1e9) {
                break;
            }
        }
    }
 
    // Updating each dp index with minimum
    // of current dp value and changing
    // machine optimally.
    for (int i = 2; i <= numProduct; i++) {
        for (int j = 1; j < i; j++) {
            dp[i] = min(dp[i],
                        dp[j] + changeTime + dp[i - j]);
        }
    }
    return dp[numProduct];
}
 
// Driver's code
int main()
{
    vector<vector<int> > machine = { { 3, 100 }, { 5, 2 } };
    int changeTime = 1;
    int Products = 3;
 
    // Function call
    cout << "Minimum time to finish the product : "
         << minimumFinishTime(machine, changeTime,
                              Products);
    return 0;
}


Java




import java.util.Arrays;
 
public class GFG {
    public static int minimumFinishTime(int[][] machine,
                                        int changeTime,
                                        int numProduct)
    {
        // Initialize a dynamic programming array dp with
        // Integer.MAX_VALUE
        int[] dp = new int[numProduct + 1];
        Arrays.fill(dp, Integer.MAX_VALUE);
 
        // Iterate over each machine
        for (int[] t : machine) {
 
            // Lapse time for each machine
            int lapTime = t[0];
 
            // Total time currently
            int totTime = t[0];
 
            for (int i = 1; i <= numProduct; i++) {
 
                // Comparing total time currently and
                // current minimum at this index of dp
                dp[i] = Math.min(dp[i], totTime);
 
                // Multiplying the lap time by the machine
                // speed for each product and adding it to
                // the total time If the total time exceeds
                // 1e9, break the loop
                if (totTime + (lapTime * t[1]) > 1e9) {
                    break;
                }
 
                totTime += lapTime
                           * t[1]; // Update the total time
                lapTime *= t[1]; // Update the lap time
            }
        }
 
        // Updating each dp index with the minimum of
        // current dp value and changing machine optimally
        for (int i = 2; i <= numProduct; i++) {
            for (int j = 1; j < i; j++) {
                dp[i] = Math.min(dp[i], dp[j] + changeTime
                                            + dp[i - j]);
            }
        }
 
        // Return the minimum time required to finish all
        // products
        return dp[numProduct];
    }
 
    public static void main(String[] args)
    {
 
        // Initialize machine array, change time and number
        // of products
        int[][] machine = { { 3, 100 }, { 5, 2 } };
        int changeTime = 1;
        int numProduct = 3;
 
        // Call the function and print the minimum time
        System.out.println(
            "Minimum time to finish the product: "
            + minimumFinishTime(machine, changeTime,
                                numProduct));
    }
}


Python3




# Function to return the minimum time
def minimumFinishTime(machine, changeTime, numProduct):
    # Initialize a dynamic programming list dp with infinite values
    dp = [float('inf')] * (numProduct + 1)
 
    # Iterate over each machine
    for t in machine:
        # Lapse time for each machine
        lapTime = t[0]
        # Total time currently
        totTime = t[0]
 
        # Iterate over each product
        for i in range(1, numProduct + 1):
            # Comparing total time currently and current minimum at this index of dp
            dp[i] = min(dp[i], totTime)
 
            # Multiplying the lap time by the machine speed for each product and adding it to the total time
            # If the total time exceeds 1e9, break the loop
            if (totTime + (lapTime * t[1])) > 1e9:
                break
            totTime += lapTime * t[1# Update the total time
            lapTime *= t[1# Update the lap time
 
    # Updating each dp index with the minimum of current dp value and changing machine optimally
    for i in range(2, numProduct + 1):
        for j in range(1, i):
            dp[i] = min(dp[i], dp[j] + changeTime + dp[i - j])
 
    # Return the minimum time required to finish all products
    return dp[numProduct]
 
 
# Driver's code
machine = [[3, 100], [5, 2]]
changeTime = 1
numProduct = 3
 
# Function call
print("Minimum time to finish the product: ",
      minimumFinishTime(machine, changeTime, numProduct))
# Code contributed by Siddharth Aher


C#




using System;
 
class Program {
    static int minimumFinishTime(int[][] machine,
                                 int changeTime,
                                 int numProduct)
    {
        // Initialize a dynamic programming array dp with
        // Integer.MAX_VALUE
        int[] dp = new int[numProduct + 1];
        for (int i = 0; i < dp.Length; i++) {
            dp[i] = int.MaxValue;
        }
 
        // Iterate over each machine
        for (int i = 0; i < machine.Length; i++) {
 
            // Lapse time for each machine
            int lapTime = machine[i][0];
 
            // Total time currently
            int totTime = machine[i][0];
 
            for (int j = 1; j <= numProduct; j++) {
 
                // Comparing total time currently and
                // current minimum at this index of dp
                dp[j] = Math.Min(dp[j], totTime);
 
                // Multiplying the lap time by the machine
                // speed for each product and adding it to
                // the total time If the total time exceeds
                // 1e9, break the loop
                if (totTime + (lapTime * machine[i][1])
                    > 1e9) {
                    break;
                }
 
                totTime += lapTime
                           * machine[i][1]; // Update the
                                            // total time
                lapTime
                    *= machine[i][1]; // Update the lap time
            }
        }
 
        // Updating each dp index with the minimum of
        // current dp value and changing machine optimally
        for (int i = 2; i <= numProduct; i++) {
            for (int j = 1; j < i; j++) {
                dp[i] = Math.Min(dp[i], dp[j] + changeTime
                                            + dp[i - j]);
            }
        }
 
        // Return the minimum time required to finish all
        // products
        return dp[numProduct];
    }
 
    static void Main(string[] args)
    {
 
        // Initialize machine array, change time and number
        // of products
        int[][] machine
            = { new int[] { 3, 100 }, new int[] { 5, 2 } };
        int changeTime = 1;
        int numProduct = 3;
 
        // Call the function and print the minimum time
        Console.WriteLine(
            "Minimum time to finish the product: "
            + minimumFinishTime(machine, changeTime,
                                numProduct));
    }
}
 
// This code is contributed by Tapesh(tapeshdua420)


Javascript




// Function to return the minimum time
function minimumFinishTime(machine, changeTime, numProduct) {
    // Initialize a dynamic programming array dp with infinite values
    let dp = new Array(numProduct + 1).fill(Number.POSITIVE_INFINITY);
 
    // Iterate over each machine
    for (let t of machine)
    {
     
        // Lapse time for each machine
        let lapTime = t[0];
         
        // Total time currently
        let totTime = t[0];
 
        // Iterate over each product
        for (let i = 1; i <= numProduct; i++) {
            // Comparing total time currently and current minimum at this index of dp
            dp[i] = Math.min(dp[i], totTime);
 
            // Multiplying the lap time by the machine speed for each product and adding it to the total time
            // If the total time exceeds 1e9, break the loop
            if (totTime + lapTime * t[1] > 1e9) {
                break;
            }
            totTime += lapTime * t[1]; // Update the total time
            lapTime *= t[1]; // Update the lap time
        }
    }
 
    // Updating each dp index with the minimum of current dp value and changing machine optimally
    for (let i = 2; i <= numProduct; i++) {
        for (let j = 1; j < i; j++) {
            dp[i] = Math.min(dp[i], dp[j] + changeTime + dp[i - j]);
        }
    }
 
    // Return the minimum time required to finish all products
    return dp[numProduct];
}
 
// Driver's code
let machine = [
    [3, 100],
    [5, 2]
];
let changeTime = 1;
let numProduct = 3;
 
// Function call
console.log(
    "Minimum time to finish the product: " +
    minimumFinishTime(machine, changeTime, numProduct)
);
// This code is contributed by Prajwal Kandekar


Output

Minimum time to finish the product : 11

Time Complexity: O(max(totalProducts^2, number of Machines))
Auxiliary Space: O(Products)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments