Given an array arr[][] of size N*3 where ith element represents that at time arr[i][0] secs, arr[i][2] coins appear at coordinate arr[i][1]. A player starts on coordinate 0 at time 0sec and can move from one coordinate to any adjacent coordinates in 1 sec and also the player can choose to stay on the same coordinate for the next second. The task is to find how many coins can the player collect.
Note: If a coin appears at time X, it disappears at time X+1.
Examples:
Input: arr[][3] = {{1, 0, 100}, {3, 3, 10}, {5, 4, 1}}
Output: 101
Explanation: The optimal strategy for players is:
At T = 0, wait at coordinate 0 to catch coins at T = 1
At T = 1, collect 100 coins
At T = 2, moves to coordinate 1
At T = 3 moves to coordinate 2
At T = 4 moves to coordinate 3
At T = 5, move to coordinate 4 and collect 1 coin that has just appeared.
Total coins = 100 + 1 = 101Input: arr[][3] = {{1, 4, 1}, {2, 4, 1}, {3, 4, 1}}
Output: 0
Naive approach: The basic way to solve the problem is as follows:
The basic way to solve this problem is to generate all possible combinations by using recursive approach.
Time Complexity: O(3N)
Auxiliary Space: O(1)
Efficient Approach: The above approach can be optimized based on the following idea:
Dynamic programming along with hashmap can be used to solve this problem. dp[i][j] = X, represents the maximum coins collected at the time i with coordinate j
it can be observed that the recursive function is called exponential times. That means that some states are called repeatedly. So the idea is to store the value of each state. This can be done using by store the value of a state and whenever the function is called, return the stored value without computing again.
Follow the steps below to solve the problem:
- Create a hashmap and map time arr[i][0] and coordinate arr[i][1] to coins arr[i][2].
- Create a recursive function that takes two parameters i representing the current time and j representing the current coordinate.
- Call the recursive function thrice first for moving backward, second for moving ahead, and third for staying on the same coordinate.
- Create a 2d array of dp[100001][5] initially filled with -1.
- If the answer for a particular state is computed then save it in dp[i][j].
- If the answer for a particular state is already computed then just return dp[i][j].
Below is the implementation of the above approach.
C++
// C++ code to implement the approach #include <bits/stdc++.h> using namespace std; // Dp table initialized with - 1 int dp[100001][5]; // Recursive function to count maximum coins // player can collect int recur( int i, int j, vector<vector< int > >& HashMap) { // Base case if (i == 100001) { return 0; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i][j] != -1) return dp[i][j]; int ans = 0; // Calling recursive function for moving // to Right coordinate if (j != 4) ans = max(ans, recur(i + 1, j + 1, HashMap) + HashMap[i + 1][j + 1]); // Calling recursive function for // staying on same position ans = max(ans, recur(i + 1, j, HashMap) + HashMap[i + 1][j]); // Calling recursive function for // moving to Left coordinate if (j != 0) ans = max(ans, recur(i + 1, j - 1, HashMap) + HashMap[i + 1][j - 1]); // Save and return dp value return dp[i][j] = ans; } // Function to calculate maximum coins // that player can collect int findMaximumScore( int arr[][3], int N) { // Filling dp table with -1 memset (dp, -1, sizeof (dp)); // Initializing hashmap with value 0 vector<vector< int > > HashMap(100010, vector< int >(6, 0)); // Filling hashmap for ( int i = 0; i < N; i++) { // At time arr[i][0] and at coordinate // arr[i][1] exactly arr[i][2] coins appear HashMap[arr[i][0]][arr[i][1]] = arr[i][2]; } return recur(0, 0, HashMap); } // Driver Code int main() { // Test Case 1 int arr[][3] = { { 1, 0, 100 }, { 3, 3, 10 }, { 5, 4, 1 } }; int N = sizeof (arr) / sizeof (arr[0]); // Function Call cout << findMaximumScore(arr, N) << endl; // Test Case 2 int arr1[][3] = { { 1, 4, 1 }, { 2, 4, 1 }, { 3, 4, 1 } }; int N1 = sizeof (arr1) / sizeof (arr1[0]); // Function Call cout << findMaximumScore(arr1, N1) << endl; return 0; } |
Java
// Java code to implement the approach import java.io.*; import java.util.*; class GFG { // Dp table initialized with - 1 static int [][] dp = new int [ 1001 ][ 5 ]; // Recursive function to count maximum coins // player can collect static int recur( int i, int j, int [][] HashMap) { // Base case if (i == 1001 ) { return 0 ; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i][j] != - 1 ) { return dp[i][j]; } int ans = 0 ; // Calling recursive function for moving // to Right coordinate if (j != 4 ) { ans = Math.max(ans, recur(i + 1 , j + 1 , HashMap) + HashMap[i + 1 ][j + 1 ]); } // Calling recursive function for // staying on same position ans = Math.max(ans, recur(i + 1 , j, HashMap) + HashMap[i + 1 ][j]); // Calling recursive function for // moving to Left coordinate if (j != 0 ) { ans = Math.max(ans, recur(i + 1 , j - 1 , HashMap) + HashMap[i + 1 ][j - 1 ]); } // Save and return dp value return dp[i][j] = ans; } // Function to calculate maximum coins // that player can collect static int findMaximumScore( int [][] arr, int N) { // Filling dp table with -1 for ( int [] row : dp) { Arrays.fill(row, - 1 ); } // Initializing hashmap with value 0 int [][] HashMap = new int [ 100010 ][ 6 ]; // Filling hashmap for ( int i = 0 ; i < N; i++) { // At time arr[i][0] and at coordinate // arr[i][1] exactly arr[i][2] coins appear HashMap[arr[i][ 0 ]][arr[i][ 1 ]] = arr[i][ 2 ]; } return recur( 0 , 0 , HashMap); } public static void main(String[] args) { // Test Case 1 int [][] arr = { { 1 , 0 , 100 }, { 3 , 3 , 10 }, { 5 , 4 , 1 } }; int N = arr.length; // Function Call System.out.println(findMaximumScore(arr, N)); // Test Case 2 int [][] arr1 = { { 1 , 4 , 1 }, { 2 , 4 , 1 }, { 3 , 4 , 1 } }; int N1 = arr1.length; // Function Call System.out.println(findMaximumScore(arr1, N1)); } } // This code is contributed by lokesh. |
Python3
# Python code to implement the approach # Dp table initialized with - 1 dp = [[ - 1 for i in range ( 5 )] for j in range ( 101 )] # Recursive function to count maximum coins # player can collect def recur(i,j,HashMap): # Base case if (i = = 101 ): return 0 # If answer for current state is already # calculated then just return dp[i][j] if (dp[i][j]! = - 1 ): return dp[i][j] ans = 0 # Calling recursive function for moving # to Right coordinate if (j! = 4 ): ans = max (ans,recur(i + 1 , j + 1 , HashMap) + HashMap[i + 1 ][j + 1 ]) # Calling recursive function for # staying on same position ans = max (ans,recur(i + 1 , j, HashMap) + HashMap[i + 1 ][j]) # Calling recursive function for # moving to Left coordinate if (j! = 0 ): ans = max (ans,recur(i + 1 , j - 1 , HashMap) + HashMap[i + 1 ][j - 1 ]) # Save and return dp value dp[i][j] = ans return dp[i][j] # Function to calculate maximum coins # that player can collect def findMaximumScore(arr,N): # Filling dp table with -1 for i in range ( len (dp)): for j in range ( len (dp[ 0 ])): dp[i][j] = - 1 # Initializing hashmap with value 0 HashMap = [[ 0 for i in range ( 6 )] for j in range ( 100010 )] # Filling hashmap for i in range (N): # At time arr[i][0] and at coordinate # arr[i][1] exactly arr[i][2] coins appear HashMap[arr[i][ 0 ]][arr[i][ 1 ]] = arr[i][ 2 ] return recur( 0 , 0 ,HashMap) # Driver Code # Test Case 1 arr = [[ 1 , 0 , 100 ],[ 3 , 3 , 10 ],[ 5 , 4 , 1 ]] N = len (arr) # Function Call print (findMaximumScore(arr, N)) # Test Case 2 arr1 = [[ 1 , 4 , 1 ],[ 2 , 4 , 1 ],[ 3 , 4 , 1 ]] N1 = len (arr1) # Function Call print (findMaximumScore(arr1, N1)) # This code is contributed by Pushpesh Raj. |
C#
// C# code to implement the approach using System; using System.Linq; public class GFG{ // Dp table initialized with - 1 static int [,] dp = new int [1001, 5]; // Recursive function to count maximum coins // player can collect static int Recur( int i, int j, int [,] hashMap) { // Base case if (i == 1001) { return 0; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i, j] != -1) { return dp[i, j]; } int ans = 0; // Calling recursive function for moving // to Right coordinate if (j != 4) { ans = Math.Max(ans, Recur(i + 1, j + 1, hashMap) + hashMap[i + 1, j + 1]); } // Calling recursive function for // staying on same position ans = Math.Max(ans, Recur(i + 1, j, hashMap) + hashMap[i + 1, j]); // Calling recursive function for // moving to Left coordinate if (j != 0) { ans = Math.Max(ans, Recur(i + 1, j - 1, hashMap) + hashMap[i + 1, j - 1]); } // Save and return dp value return dp[i, j] = ans; } // Function to calculate maximum coins // that player can collect static int FindMaximumScore( int [,] arr, int N) { // Filling dp table with -1 for ( int i = 0; i < dp.GetLength(0); i++) { for ( int j = 0; j < dp.GetLength(1); j++) { dp[i, j] = -1; } } // Initializing hashmap with value 0 int [,] hashMap = new int [100010, 6]; // Filling hashmap for ( int i = 0; i < N; i++) { // At time arr[i][0] and at coordinate // arr[i][1] exactly arr[i][2] coins appear hashMap[arr[i, 0], arr[i, 1]] = arr[i, 2]; } return Recur(0, 0, hashMap); } static public void Main (){ // Code // Test Case 1 int [, ] arr = { { 1, 0, 100 }, { 3, 3, 10 }, { 5, 4, 1 } }; int N = arr.GetLength(0); // Function Call Console.WriteLine(FindMaximumScore(arr, N)); // Test Case 2 int [, ] arr1 = { { 1, 4, 1 }, { 2, 4, 1 }, { 3, 4, 1 } }; int N1 = arr1.GetLength(0); // Function Call Console.WriteLine(FindMaximumScore(arr1, N1)); } } // This code is contributed by lokeshmvs21. |
Javascript
// JS code to implement the approach // Dp table initialized with - 1 let dp = new Array(1001) for (let i = 0; i < dp.length; i++) { dp[i] = new Array(5); } // Recursive function to count maximum coins // player can collect function recur(i, j, HashMap) { // Base case if (i == 1001) { return 0; } // If answer for current state is already // calculated then just return dp[i][j] if (dp[i][j] != -1) return dp[i][j]; let ans = 0; // Calling recursive function for moving // to Right coordinate if (j != 4) ans = Math.max(ans, recur(i + 1, j + 1, HashMap) + HashMap[i + 1][j + 1]); // Calling recursive function for // staying on same position ans = Math.max(ans, recur(i + 1, j, HashMap) + HashMap[i + 1][j]); // Calling recursive function for // moving to Left coordinate if (j != 0) ans = Math.max(ans, recur(i + 1, j - 1, HashMap) + HashMap[i + 1][j - 1]); // Save and return dp value return dp[i][j] = ans; } // Function to calculate maximum coins // that player can collect function findMaximumScore(arr, N) { // Filling dp table with -1 for (let i = 0; i < dp.length; i++) { for (let j = 0; j < dp[i].length; j++) { dp[i][j] = -1; } } // Initializing hashmap with value 0 let HashMap = new Array(100010); for (let i = 0; i < HashMap.length; i++) { HashMap[i] = new Array(6).fill(0) } // Filling hashmap for (let i = 0; i < N; i++) { // At time arr[i][0] and at coordinate // arr[i][1] exactly arr[i][2] coins appear HashMap[arr[i][0]][arr[i][1]] = arr[i][2]; } return recur(0, 0, HashMap); } // Driver Code // Test Case 1 let arr = [[1, 0, 100], [3, 3, 10], [5, 4, 1]]; let N = arr.length; // Function Call console.log(findMaximumScore(arr, N) + "<br>" ); // Test Case 2 let arr1 = [[1, 4, 1], [2, 4, 1], [3, 4, 1]]; let N1 = arr1.length; // Function Call console.log(findMaximumScore(arr1, N1) + "<br>" ); // This code is contributed by Potta Lokesh |
101 0
Time Complexity: O(N * M) where M denotes the maximum amount of time present in array.
Auxiliary Space: O(N * M)
Related Articles:
- Introduction to Dynamic Programming – Data Structures and Algorithms Tutorials
- Introduction to Hashing – Data Structure and Algorithm Tutorials
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!