Friday, January 10, 2025
Google search engine
HomeLanguagesDynamic ProgrammingCount valid strings that contains ‘0’, ‘1’ or ‘2’

Count valid strings that contains ‘0’, ‘1’ or ‘2’

Given an integer n(1 <= n <= 105), the task is to count valid string S of length n, which contains characters ‘0’, ‘1’, or ‘2’ only. For a valid string, it must follow the below conditions.

  • There should not be more than K1 occurrences of ‘0’.
  • There should not be more than K2 consecutive ‘1’s. (1 <= K1, K2 <= 10)

Note: The answer may be very large, so return it modulo 109 + 7.

Examples:

Input: n = 2, K1 = 1, K2 = 2
Output: 8
Explanation: There are 8 valid strings of length 2: “22”, “02”, “20”, “12”, “21”, “01”, “10”, “11”. “00” is not valid string because there should not be more than one occurrence of ‘0’.

Input: n = 5, K1 = 2, K2 = 3;
Output: 139

Input: n = n = 1012, K1 = 3, K2 = 5
Output: 663818944

Counting valid strings that contain ‘0’, ‘1’, or ‘2’ using Recursion:

  • Base Case: When n becomes 0, this indicates that a valid string of the desired length has been generated. So, return 1.
  • Within the countValidString() function, iterates over the three possible characters: ‘0’, ‘1’, and ‘2’. For each character, checks if it can be added to the string based on the constraints:
    • If zeroCount < K1, we can add ‘0’ to the string. So, recur for rest of the length and store result in res1.
    • If oneCount < K2, we can add ‘1’ to the string. So, recur for rest of the length and store result in res2.
    • We can always add ‘2’ to the string. So, recur for rest of the length and store result in res3.
  • Finally, return the overall result = (res1 + res2 + res3) % 1e9+7.

Below is the implementation of the above approach:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Define a modulo value
int mod = 1e9 + 7;
 
// Recursive function to calculate the number
// of valid strings
int countValidString(int zeroCount, int oneCount, int K1,
                     int K2, int n)
{
 
    // Base case: If n becomes 0, return 1
    // as a valid record is found
    if (n == 0)
        return 1;
 
    // Initialize variables to store
    // different results
    long long res1 = 0, res2 = 0, res3 = 0;
 
    // Iterate over three possible
    // characters: 0, 1, and 2
    for (int i = 0; i <= 2; i++) {
 
        // Check if we can add '0' to
        // the string (zeroCount < K1)
        if (zeroCount < K1 && i == 0) {
            res1 = countValidString(zeroCount + 1, 0, K1,
                                    K2, n - 1);
        }
 
        // Check if we can add '1' to the
        // string (oneCount < K2)
        if (oneCount < K2 && i == 1) {
            res2 = countValidString(zeroCount, oneCount + 1,
                                    K1, K2, n - 1);
        }
 
        // Add '2' to the string
        res3
            = countValidString(zeroCount, 0, K1, K2, n - 1);
    }
 
    // Return the sum modulo 'mod'
    return (res1 + res2 + res3) % mod;
}
 
// Drivers code
int main()
{
    int n = 2, K1 = 1, K2 = 2;
 
    // Call the solve function to calculate
    // the valid strings
    cout << countValidString(0, 0, K1, K2, n);
 
    return 0;
}


Output

8

Time Complexity: O(3^n), where ‘n’ is the length of the string.
Auxiliary Space: O(n)

Counting valid strings that contains ‘0’, ‘1’, or ‘2’ using Dynamic Programming (Memoization):

Explore the valid string using recursion and memoize the subproblems. The state includes the counts of ‘0’s and consecutive ‘1’s, and recursion explores character choices (‘0’, ‘1’, ‘2’) for valid strings, we also keep maintain the constraints like no more than K1 ‘0’ and no K2 consecutive ‘1’s. Finally, add valid answers to result and return the result by taking modulo.

Step-by-step approach:

  • Use a three dimensional dp[zeroCount][oneCount][n1], which represents the result of subproblem when the count of zero was zeroCount, the count of one was oneCount for n1 length string.
  • Base Case: When n becomes 0, this indicates that a valid string of the desired length has been generated. So, return 1.
  • Within the countValidString() function, iterates over the three possible characters: ‘0’, ‘1’, and ‘2’. For each character, checks if it can be added to the string based on the constraints:
    • If zeroCount < K1, we can add ‘0’ to the string. So, recur for rest of the length and store result in res1.
    • If oneCount < K2, we can add ‘1’ to the string. So, recur for rest of the length and store result in res2.
    • We can always add ‘2’ to the string. So, recur for rest of the length and store result in res3.
  • Finally, store the overall result in dp before returning result = (res1 + res2 + res3) % 1e9+7.

Below is the implementation of the above approch:

C++




// C++ code for the above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Define a 3D array for memoization
int dp[10][10][100005];
 
// Define a modulo value
int mod = 1e9 + 7;
 
// Recursive function to calculate the
// number of valid strings
int countValidString(int zeroCount, int oneCount, int K1,
                     int K2, int n)
{
 
    // Base case: If n becomes 0, return 1
    // as a valid record is found
    if (n == 0)
        return 1;
 
    // If the result for the current state
    // is already calculated, return it
    if (dp[zeroCount][oneCount][n] != -1)
        return dp[zeroCount][oneCount][n];
 
    // Initialize variables to
    // store different results
    long long res1 = 0, res2 = 0, res3 = 0;
 
    // Iterate over three possible
    // characters: 0, 1, and 2
    for (int i = 0; i <= 2; i++) {
 
        // Check if we can add '0' to
        // the string (zeroCount < K1)
        if (zeroCount < K1 && i == 0) {
            res1 = countValidString(zeroCount + 1, 0, K1,
                                    K2, n - 1);
        }
 
        // Check if we can add '1' to the
        // string (oneCount < K2)
        if (oneCount < K2 && i == 1) {
            res2 = countValidString(zeroCount, oneCount + 1,
                                    K1, K2, n - 1);
        }
 
        // Add '2' to the string
        res3
            = countValidString(zeroCount, 0, K1, K2, n - 1);
    }
 
    // Store the result in the memoization
    // table and return the sum modulo 'mod'
    return dp[zeroCount][oneCount][n]
           = (res1 + res2 + res3) % mod;
}
 
// Drivers code
int main()
{
    int n = 1012, K1 = 3, K2 = 5;
 
    // Initialize the memoization table with -1
    memset(dp, -1, sizeof(dp));
 
    // Call the solve function to calculate
    // the valid strings
    cout << countValidString(0, 0, K1, K2, n);
 
    return 0;
}


Output

663818944

Time Complexity: O(N)
Auxiliary Space: O(N*K1*K2)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

RELATED ARTICLES

Most Popular

Recent Comments